AzurLaneAutoScript/module/base/button.py

476 lines
16 KiB
Python

import os
import traceback
import imageio
from PIL import ImageDraw
from module.base.decorator import cached_property
from module.base.resource import Resource
from module.base.utils import *
from module.config.server import VALID_SERVER
class Button(Resource):
def __init__(self, area, color, button, file=None, name=None):
"""Initialize a Button instance.
Args:
area (dict[tuple], tuple): Area that the button would appear on the image.
(upper_left_x, upper_left_y, bottom_right_x, bottom_right_y)
color (dict[tuple], tuple): Color we expect the area would be.
(r, g, b)
button (dict[tuple], tuple): Area to be click if button appears on the image.
(upper_left_x, upper_left_y, bottom_right_x, bottom_right_y)
If tuple is empty, this object can be use as a checker.
Examples:
BATTLE_PREPARATION = Button(
area=(1562, 908, 1864, 1003),
color=(231, 181, 90),
button=(1562, 908, 1864, 1003)
)
"""
self.raw_area = area
self.raw_color = color
self.raw_button = button
self.raw_file = file
self.raw_name = name
self._button_offset = None
self._match_init = False
self._match_binary_init = False
self._match_luma_init = False
self.image = None
self.image_binary = None
self.image_luma = None
if self.file:
self.resource_add(key=self.file)
cached = ['area', 'color', '_button', 'file', 'name', 'is_gif']
@cached_property
def area(self):
return self.parse_property(self.raw_area)
@cached_property
def color(self):
return self.parse_property(self.raw_color)
@cached_property
def _button(self):
return self.parse_property(self.raw_button)
@cached_property
def file(self):
return self.parse_property(self.raw_file)
@cached_property
def name(self):
if self.raw_name:
return self.raw_name
elif self.file:
return os.path.splitext(os.path.split(self.file)[1])[0]
else:
return 'BUTTON'
@cached_property
def is_gif(self):
if self.file:
return os.path.splitext(self.file)[1] == '.gif'
else:
return False
def __str__(self):
return self.name
__repr__ = __str__
def __eq__(self, other):
return str(self) == str(other)
def __hash__(self):
return hash(self.name)
def __bool__(self):
return True
@property
def button(self):
if self._button_offset is None:
return self._button
else:
return self._button_offset
def appear_on(self, image, threshold=10):
"""Check if the button appears on the image.
Args:
image (np.ndarray): Screenshot.
threshold (int): Default to 10.
Returns:
bool: True if button appears on screenshot.
"""
return color_similar(
color1=get_color(image, self.area),
color2=self.color,
threshold=threshold
)
def load_color(self, image):
"""Load color from the specific area of the given image.
This method is irreversible, this would be only use in some special occasion.
Args:
image: Another screenshot.
Returns:
tuple: Color (r, g, b).
"""
self.__dict__['color'] = get_color(image, self.area)
self.image = crop(image, self.area)
self.__dict__['is_gif'] = False
return self.color
def load_offset(self, button):
"""
Load offset from another button.
Args:
button (Button):
"""
offset = np.subtract(button.button, button._button)[:2]
self._button_offset = area_offset(self._button, offset=offset)
def clear_offset(self):
self._button_offset = None
def ensure_template(self):
"""
Load asset image.
If needs to call self.match, call this first.
"""
if not self._match_init:
if self.is_gif:
self.image = []
for image in imageio.mimread(self.file):
image = image[:, :, :3].copy() if len(image.shape) == 3 else image
image = crop(image, self.area)
self.image.append(image)
else:
self.image = load_image(self.file, self.area)
self._match_init = True
def ensure_binary_template(self):
"""
Load asset image.
If needs to call self.match, call this first.
"""
if not self._match_binary_init:
if self.is_gif:
self.image_binary = []
for image in self.image:
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, image_binary = cv2.threshold(image_gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
self.image_binary.append(image_binary)
else:
image_gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
_, self.image_binary = cv2.threshold(image_gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
self._match_binary_init = True
def ensure_luma_template(self):
if not self._match_luma_init:
if self.is_gif:
self.image_luma = []
for image in self.image:
luma = rgb2luma(image)
self.image_luma.append(luma)
else:
self.image_luma = rgb2luma(self.image)
self._match_luma_init = True
def resource_release(self):
super().resource_release()
self.image = None
self.image_binary = None
self.image_luma = None
self._match_init = False
self._match_binary_init = False
self._match_luma_init = False
def match(self, image, offset=30, threshold=0.85):
"""Detects button by template matching. To Some button, its location may not be static.
Args:
image: Screenshot.
offset (int, tuple): Detection area offset.
threshold (float): 0-1. Similarity.
Returns:
bool.
"""
self.ensure_template()
if isinstance(offset, tuple):
if len(offset) == 2:
offset = np.array((-offset[0], -offset[1], offset[0], offset[1]))
else:
offset = np.array(offset)
else:
offset = np.array((-3, -offset, 3, offset))
image = crop(image, offset + self.area)
if self.is_gif:
for template in self.image:
res = cv2.matchTemplate(template, image, cv2.TM_CCOEFF_NORMED)
_, similarity, _, point = cv2.minMaxLoc(res)
self._button_offset = area_offset(self._button, offset[:2] + np.array(point))
if similarity > threshold:
return True
return False
else:
res = cv2.matchTemplate(self.image, image, cv2.TM_CCOEFF_NORMED)
_, similarity, _, point = cv2.minMaxLoc(res)
self._button_offset = area_offset(self._button, offset[:2] + np.array(point))
return similarity > threshold
def match_binary(self, image, offset=30, threshold=0.85):
"""Detects button by template matching. To Some button, its location may not be static.
This method will apply template matching under binarization.
Args:
image: Screenshot.
offset (int, tuple): Detection area offset.
threshold (float): 0-1. Similarity.
Returns:
bool.
"""
self.ensure_template()
self.ensure_binary_template()
if isinstance(offset, tuple):
if len(offset) == 2:
offset = np.array((-offset[0], -offset[1], offset[0], offset[1]))
else:
offset = np.array(offset)
else:
offset = np.array((-3, -offset, 3, offset))
image = crop(image, offset + self.area)
if self.is_gif:
for template in self.image_binary:
# graying
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# binarization
_, image_binary = cv2.threshold(image_gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# template matching
res = cv2.matchTemplate(template, image_binary, cv2.TM_CCOEFF_NORMED)
_, similarity, _, point = cv2.minMaxLoc(res)
self._button_offset = area_offset(self._button, offset[:2] + np.array(point))
if similarity > threshold:
return True
return False
else:
# graying
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# binarization
_, image_binary = cv2.threshold(image_gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# template matching
res = cv2.matchTemplate(self.image_binary, image_binary, cv2.TM_CCOEFF_NORMED)
_, similarity, _, point = cv2.minMaxLoc(res)
self._button_offset = area_offset(self._button, offset[:2] + np.array(point))
return similarity > threshold
def match_luma(self, image, offset=30, threshold=0.85):
"""
Detects button by template matching under Y channel (Luminance)
Args:
image: Screenshot.
offset (int, tuple): Detection area offset.
threshold (float): 0-1. Similarity.
Returns:
bool.
"""
self.ensure_template()
self.ensure_luma_template()
if isinstance(offset, tuple):
if len(offset) == 2:
offset = np.array((-offset[0], -offset[1], offset[0], offset[1]))
else:
offset = np.array(offset)
else:
offset = np.array((-3, -offset, 3, offset))
image = crop(image, offset + self.area)
if self.is_gif:
image_luma = rgb2luma(image)
for template in self.image_luma:
res = cv2.matchTemplate(template, image_luma, cv2.TM_CCOEFF_NORMED)
_, similarity, _, point = cv2.minMaxLoc(res)
self._button_offset = area_offset(self._button, offset[:2] + np.array(point))
if similarity > threshold:
return True
else:
image_luma = rgb2luma(image)
res = cv2.matchTemplate(self.image_luma, image_luma, cv2.TM_CCOEFF_NORMED)
_, similarity, _, point = cv2.minMaxLoc(res)
self._button_offset = area_offset(self._button, offset[:2] + np.array(point))
return similarity > threshold
def match_appear_on(self, image, threshold=30):
"""
Args:
image: Screenshot.
threshold: Default to 10.
Returns:
bool:
"""
diff = np.subtract(self.button, self._button)[:2]
area = area_offset(self.area, offset=diff)
return color_similar(color1=get_color(image, area), color2=self.color, threshold=threshold)
def crop(self, area, image=None, name=None):
"""
Get a new button by relative coordinates.
Args:
area (tuple):
image (np.ndarray): Screenshot. If provided, load color and image from it.
name (str):
Returns:
Button:
"""
if name is None:
name = self.name
new_area = area_offset(area, offset=self.area[:2])
new_button = area_offset(area, offset=self.button[:2])
button = Button(area=new_area, color=self.color, button=new_button, file=self.file, name=name)
if image is not None:
button.load_color(image)
return button
def move(self, vector, image=None, name=None):
"""
Move button.
Args:
vector (tuple):
image (np.ndarray): Screenshot. If provided, load color and image from it.
name (str):
Returns:
Button:
"""
if name is None:
name = self.name
new_area = area_offset(self.area, offset=vector)
new_button = area_offset(self.button, offset=vector)
button = Button(area=new_area, color=self.color, button=new_button, file=self.file, name=name)
if image is not None:
button.load_color(image)
return button
def split_server(self):
"""
Split into 4 server specific buttons.
Returns:
dict[str, Button]:
"""
out = {}
for s in VALID_SERVER:
out[s] = Button(
area=self.parse_property(self.raw_area, s),
color=self.parse_property(self.raw_color, s),
button=self.parse_property(self.raw_button, s),
file=self.parse_property(self.raw_file, s),
name=self.name
)
return out
class ButtonGrid:
def __init__(self, origin, delta, button_shape, grid_shape, name=None):
self.origin = np.array(origin)
self.delta = np.array(delta)
self.button_shape = np.array(button_shape)
self.grid_shape = np.array(grid_shape)
if name:
self._name = name
else:
(filename, line_number, function_name, text) = traceback.extract_stack()[-2]
self._name = text[:text.find('=')].strip()
def __getitem__(self, item):
base = np.round(np.array(item) * self.delta + self.origin).astype(int)
area = tuple(np.append(base, base + self.button_shape))
return Button(area=area, color=(), button=area, name='%s_%s_%s' % (self._name, item[0], item[1]))
def generate(self):
for y in range(self.grid_shape[1]):
for x in range(self.grid_shape[0]):
yield x, y, self[x, y]
@cached_property
def buttons(self):
return list([button for _, _, button in self.generate()])
def crop(self, area, name=None):
"""
Args:
area (tuple): Area related to self.origin
name (str): Name of the new ButtonGrid instance.
Returns:
ButtonGrid:
"""
if name is None:
name = self._name
origin = self.origin + area[:2]
button_shape = np.subtract(area[2:], area[:2])
return ButtonGrid(
origin=origin, delta=self.delta, button_shape=button_shape, grid_shape=self.grid_shape, name=name)
def move(self, vector, name=None):
"""
Args:
vector (tuple): Move vector.
name (str): Name of the new ButtonGrid instance.
Returns:
ButtonGrid:
"""
if name is None:
name = self._name
origin = self.origin + vector
return ButtonGrid(
origin=origin, delta=self.delta, button_shape=self.button_shape, grid_shape=self.grid_shape, name=name)
def gen_mask(self):
"""
Generate a mask image to display this ButtonGrid object for debugging.
Returns:
PIL.Image.Image: Area in white, background in black.
"""
image = Image.new("RGB", (1280, 720), (0, 0, 0))
draw = ImageDraw.Draw(image)
for button in self.buttons:
draw.rectangle((button.area[:2], button.button[2:]), fill=(255, 255, 255), outline=None)
return image
def show_mask(self):
self.gen_mask().show()
def save_mask(self):
"""
Save mask to {name}.png
"""
self.gen_mask().save(f'{self._name}.png')