Add warnings for files related to Onnx exports (#2385)

* Fix Onnx Export And Support TensorRT

* Add files via upload

* Update attentions_onnx.py

* Update models_onnx.py

* Update models_onnx.py

* Add files via upload

* Add files via upload
This commit is contained in:
Ναρουσέ·μ·γιουμεμί·Χινακάννα 2024-11-24 23:09:44 +08:00 committed by GitHub
parent 709bbbac1a
commit 7ef1986778
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 46 additions and 43 deletions

View File

@ -1,3 +1,11 @@
############################## Warning! ##############################
# #
# Onnx Export Not Support All Of Non-Torch Types #
# Include Python Built-in Types!!!!!!!!!!!!!!!!! #
# If You Want TO Change This File #
# Do Not Use All Of Non-Torch Types! #
# #
############################## Warning! ##############################
import copy
import math
from typing import Optional

View File

@ -1,3 +1,12 @@
############################## Warning! ##############################
# #
# Onnx Export Not Support All Of Non-Torch Types #
# Include Python Built-in Types!!!!!!!!!!!!!!!!! #
# If You Want TO Change This File #
# Do Not Use All Of Non-Torch Types! #
# #
############################## Warning! ##############################
import math
import logging
@ -316,9 +325,29 @@ class SineGen(torch.nn.Module):
# generate uv signal
uv = torch.ones_like(f0)
uv = uv * (f0 > self.voiced_threshold)
if uv.device.type == "privateuseone": # for DirectML
uv = uv.float()
return uv
def forward(self, f0, upp):
def _f02sine(self, f0, upp):
""" f0: (batchsize, length, dim)
where dim indicates fundamental tone and overtones
"""
a = torch.arange(1, upp + 1, dtype=f0.dtype, device=f0.device)
rad = f0 / self.sampling_rate * a
rad2 = torch.fmod(rad[:, :-1, -1:].float() + 0.5, 1.0) - 0.5
rad_acc = rad2.cumsum(dim=1).fmod(1.0).to(f0)
rad += F.pad(rad_acc, (0, 0, 1, 0), mode='constant')
rad = rad.reshape(f0.shape[0], -1, 1)
b = torch.arange(1, self.dim + 1, dtype=f0.dtype, device=f0.device).reshape(1, 1, -1)
rad *= b
rand_ini = torch.rand(1, 1, self.dim, device=f0.device)
rand_ini[..., 0] = 0
rad += rand_ini
sines = torch.sin(2 * np.pi * rad)
return sines
def forward(self, f0: torch.Tensor, upp: int):
"""sine_tensor, uv = forward(f0)
input F0: tensor(batchsize=1, length, dim=1)
f0 for unvoiced steps should be 0
@ -326,48 +355,11 @@ class SineGen(torch.nn.Module):
output uv: tensor(batchsize=1, length, 1)
"""
with torch.no_grad():
f0 = f0[:, None].transpose(1, 2)
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
# fundamental component
f0_buf[:, :, 0] = f0[:, :, 0]
for idx in np.arange(self.harmonic_num):
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
idx + 2
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
rad_values = (
f0_buf / self.sampling_rate
) % 1 ###%1意味着n_har的乘积无法后处理优化
rand_ini = torch.rand(
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
)
rand_ini[:, 0] = 0
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
tmp_over_one = torch.cumsum(
rad_values, 1
) # % 1 #####%1意味着后面的cumsum无法再优化
tmp_over_one *= upp
tmp_over_one = F.interpolate(
tmp_over_one.transpose(2, 1),
scale_factor=upp,
mode="linear",
align_corners=True,
).transpose(2, 1)
rad_values = F.interpolate(
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
).transpose(
2, 1
) #######
tmp_over_one %= 1
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
cumsum_shift = torch.zeros_like(rad_values)
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
sine_waves = torch.sin(
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
)
sine_waves = sine_waves * self.sine_amp
f0 = f0.unsqueeze(-1)
sine_waves = self._f02sine(f0, upp) * self.sine_amp
uv = self._f02uv(f0)
uv = F.interpolate(
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
uv.transpose(2, 1), scale_factor=float(upp), mode="nearest"
).transpose(2, 1)
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)

View File

@ -1,5 +1,6 @@
import torch
import onnxsim
import onnx
from infer.lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
def export_onnx(ModelPath, ExportedPath):
@ -48,4 +49,6 @@ def export_onnx(ModelPath, ExportedPath):
input_names=input_names,
output_names=output_names,
)
model, _ = onnxsim.simplify(ExportedPath)
onnx.save(model, ExportedPath)
return "Finished"