mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-07 03:27:25 +08:00
Add warnings for files related to Onnx exports (#2385)
* Fix Onnx Export And Support TensorRT * Add files via upload * Update attentions_onnx.py * Update models_onnx.py * Update models_onnx.py * Add files via upload * Add files via upload
This commit is contained in:
parent
709bbbac1a
commit
7ef1986778
@ -1,3 +1,11 @@
|
||||
############################## Warning! ##############################
|
||||
# #
|
||||
# Onnx Export Not Support All Of Non-Torch Types #
|
||||
# Include Python Built-in Types!!!!!!!!!!!!!!!!! #
|
||||
# If You Want TO Change This File #
|
||||
# Do Not Use All Of Non-Torch Types! #
|
||||
# #
|
||||
############################## Warning! ##############################
|
||||
import copy
|
||||
import math
|
||||
from typing import Optional
|
||||
|
@ -1,3 +1,12 @@
|
||||
############################## Warning! ##############################
|
||||
# #
|
||||
# Onnx Export Not Support All Of Non-Torch Types #
|
||||
# Include Python Built-in Types!!!!!!!!!!!!!!!!! #
|
||||
# If You Want TO Change This File #
|
||||
# Do Not Use All Of Non-Torch Types! #
|
||||
# #
|
||||
############################## Warning! ##############################
|
||||
|
||||
import math
|
||||
import logging
|
||||
|
||||
@ -316,9 +325,29 @@ class SineGen(torch.nn.Module):
|
||||
# generate uv signal
|
||||
uv = torch.ones_like(f0)
|
||||
uv = uv * (f0 > self.voiced_threshold)
|
||||
if uv.device.type == "privateuseone": # for DirectML
|
||||
uv = uv.float()
|
||||
return uv
|
||||
|
||||
def forward(self, f0, upp):
|
||||
|
||||
def _f02sine(self, f0, upp):
|
||||
""" f0: (batchsize, length, dim)
|
||||
where dim indicates fundamental tone and overtones
|
||||
"""
|
||||
a = torch.arange(1, upp + 1, dtype=f0.dtype, device=f0.device)
|
||||
rad = f0 / self.sampling_rate * a
|
||||
rad2 = torch.fmod(rad[:, :-1, -1:].float() + 0.5, 1.0) - 0.5
|
||||
rad_acc = rad2.cumsum(dim=1).fmod(1.0).to(f0)
|
||||
rad += F.pad(rad_acc, (0, 0, 1, 0), mode='constant')
|
||||
rad = rad.reshape(f0.shape[0], -1, 1)
|
||||
b = torch.arange(1, self.dim + 1, dtype=f0.dtype, device=f0.device).reshape(1, 1, -1)
|
||||
rad *= b
|
||||
rand_ini = torch.rand(1, 1, self.dim, device=f0.device)
|
||||
rand_ini[..., 0] = 0
|
||||
rad += rand_ini
|
||||
sines = torch.sin(2 * np.pi * rad)
|
||||
return sines
|
||||
|
||||
def forward(self, f0: torch.Tensor, upp: int):
|
||||
"""sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
@ -326,48 +355,11 @@ class SineGen(torch.nn.Module):
|
||||
output uv: tensor(batchsize=1, length, 1)
|
||||
"""
|
||||
with torch.no_grad():
|
||||
f0 = f0[:, None].transpose(1, 2)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
||||
# fundamental component
|
||||
f0_buf[:, :, 0] = f0[:, :, 0]
|
||||
for idx in np.arange(self.harmonic_num):
|
||||
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
||||
idx + 2
|
||||
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (
|
||||
f0_buf / self.sampling_rate
|
||||
) % 1 ###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(
|
||||
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
||||
)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
tmp_over_one = torch.cumsum(
|
||||
rad_values, 1
|
||||
) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one *= upp
|
||||
tmp_over_one = F.interpolate(
|
||||
tmp_over_one.transpose(2, 1),
|
||||
scale_factor=upp,
|
||||
mode="linear",
|
||||
align_corners=True,
|
||||
).transpose(2, 1)
|
||||
rad_values = F.interpolate(
|
||||
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(
|
||||
2, 1
|
||||
) #######
|
||||
tmp_over_one %= 1
|
||||
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||
cumsum_shift = torch.zeros_like(rad_values)
|
||||
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
sine_waves = torch.sin(
|
||||
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
||||
)
|
||||
sine_waves = sine_waves * self.sine_amp
|
||||
f0 = f0.unsqueeze(-1)
|
||||
sine_waves = self._f02sine(f0, upp) * self.sine_amp
|
||||
uv = self._f02uv(f0)
|
||||
uv = F.interpolate(
|
||||
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
uv.transpose(2, 1), scale_factor=float(upp), mode="nearest"
|
||||
).transpose(2, 1)
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
|
@ -1,5 +1,6 @@
|
||||
import torch
|
||||
|
||||
import onnxsim
|
||||
import onnx
|
||||
from infer.lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
|
||||
|
||||
def export_onnx(ModelPath, ExportedPath):
|
||||
@ -48,4 +49,6 @@ def export_onnx(ModelPath, ExportedPath):
|
||||
input_names=input_names,
|
||||
output_names=output_names,
|
||||
)
|
||||
model, _ = onnxsim.simplify(ExportedPath)
|
||||
onnx.save(model, ExportedPath)
|
||||
return "Finished"
|
||||
|
Loading…
Reference in New Issue
Block a user