seafile/lib/net.c

1090 lines
27 KiB
C

/* -*- Mode: C; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
#include "include.h"
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <string.h>
#ifdef WIN32
#define WINVER 0x0501
#include <inttypes.h>
#include <winsock2.h>
#include <ctype.h>
#include <ws2tcpip.h>
#define UNUSED
#else
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <sys/un.h>
#include <net/if.h>
#include <netinet/tcp.h>
#endif
#include <fcntl.h>
#include <evutil.h>
#include "net.h"
#ifdef WIN32
#ifndef EAFNOSUPPORT
#define EAFNOSUPPORT WSAEAFNOSUPPORT
#endif
#ifndef IN6ADDRSZ
#define IN6ADDRSZ 16
#endif
#ifndef INT16SZ
#define INT16SZ 2
#endif
#ifndef INADDRSZ
#define INADDRSZ 4
#endif
#ifndef inet_ntop
static const char *inet_ntop4(const u_char *src, char *dst, size_t size)
{
static const char fmt[] = "%u.%u.%u.%u";
char tmp[sizeof("255.255.255.255")];
int l;
l = _snprintf(tmp, size, fmt, src[0], src[1], src[2], src[3]);
if (l <= 0 || l >= size) {
return (NULL);
}
strncpy(dst, tmp, size);
return (dst);
}
static const char *inet_ntop6(const u_char *src, char *dst, size_t size)
{
char tmp[sizeof "ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255"];
char *tp, *ep;
struct
{
int base, len;
} best, cur;
u_int words[IN6ADDRSZ / INT16SZ];
int i;
int advance;
memset(words, '\0', sizeof(words));
for (i = 0; i < IN6ADDRSZ; i++)
words[i / 2] |= (src[i] << ((1 - (i % 2)) << 3));
best.base = -1;
cur.base = -1;
best.len = -1;
cur.len = -1;
for (i = 0; i < (IN6ADDRSZ / INT16SZ); i++) {
if (words[i] == 0) {
if (cur.base == -1)
cur.base = i, cur.len = 1;
else
cur.len++;
}
else {
if (cur.base != -1) {
if (best.base == -1 || cur.len > best.len)
best = cur;
cur.base = -1;
}
}
}
if (cur.base != -1) {
if (best.base == -1 || cur.len > best.len)
best = cur;
}
if (best.base != -1 && best.len < 2)
best.base = -1;
tp = tmp;
ep = tmp + sizeof(tmp);
for (i = 0; i < (IN6ADDRSZ / INT16SZ) && tp < ep; i++) {
/** Are we inside the best run of 0x00's? */
if (best.base != -1 && i >= best.base &&
i < (best.base + best.len)) {
if (i == best.base) {
if (tp + 1 >= ep)
return (NULL);
*tp++ = ':';
}
continue;
}
/** Are we following an initial run of 0x00s or any real hex? */
if (i != 0) {
if (tp + 1 >= ep)
return (NULL);
*tp++ = ':';
}
/** Is this address an encapsulated IPv4? */
if (i == 6 && best.base == 0 &&
(best.len == 6 || (best.len == 5 && words[5] == 0xffff))) {
if (!inet_ntop4(src+12, tp, (size_t)(ep - tp)))
return (NULL);
tp += strlen(tp);
break;
}
advance = snprintf(tp, ep - tp, "%x", words[i]);
if (advance <= 0 || advance >= ep - tp)
return (NULL);
tp += advance;
}
/** Was it a trailing run of 0x00's? */
if (best.base != -1 && (best.base + best.len) == (IN6ADDRSZ / INT16SZ)) {
if (tp + 1 >= ep)
return (NULL);
*tp++ = ':';
}
if (tp + 1 >= ep)
return (NULL);
*tp++ = '\0';
/**
* Check for overflow, copy, and we're done.
*/
if ((size_t)(tp - tmp) > size) {
errno = ENOSPC;
return (NULL);
}
strncpy(dst, tmp, size);
dst[size] = '\0';
return (dst);
}
const char *inet_ntop(int af, const void *src, char *dst, size_t size)
{
switch (af) {
case AF_INET:
return (inet_ntop4(src, dst, size));
case AF_INET6:
return (inet_ntop6(src, dst, size));
default:
return (NULL);
}
/** NOTREACHED */
}
#endif //inet_ntop
#ifndef inet_aton
int inet_aton(const char *string, struct in_addr *addr)
{
addr->s_addr = inet_addr(string);
if (addr->s_addr != -1 || strcmp("255.255.255.255", string) == 0)
return 1;
return 0;
}
#endif
#ifndef inet_pton
/*
* Don't even consider trying to compile this on a system where
* sizeof(int) < 4. sizeof(int) > 4 is fine; all the world's not a VAX.
*/
/* int
* inet_pton4(src, dst, pton)
* when last arg is 0: inet_aton(). with hexadecimal, octal and shorthand.
* when last arg is 1: inet_pton(). decimal dotted-quad only.
* return:
* 1 if `src' is a valid input, else 0.
* notice:
* does not touch `dst' unless it's returning 1.
* author:
* Paul Vixie, 1996.
*/
int inet_pton4(const char *src, u_char *dst, int pton)
{
u_int val;
u_int digit;
int base, n;
unsigned char c;
u_int parts[4];
register u_int *pp = parts;
c = *src;
for (;;) {
/*
* Collect number up to ``.''.
* Values are specified as for C:
* 0x=hex, 0=octal, isdigit=decimal.
*/
if (!isdigit(c))
return (0);
val = 0; base = 10;
if (c == '0') {
c = *++src;
if (c == 'x' || c == 'X')
base = 16, c = *++src;
else if (isdigit(c) && c != '9')
base = 8;
}
/* inet_pton() takes decimal only */
if (pton && base != 10)
return (0);
for (;;) {
if (isdigit(c)) {
digit = c - '0';
if (digit >= base)
break;
val = (val * base) + digit;
c = *++src;
} else if (base == 16 && isxdigit(c)) {
digit = c + 10 - (islower(c) ? 'a' : 'A');
if (digit >= 16)
break;
val = (val << 4) | digit;
c = *++src;
} else
break;
}
if (c == '.') {
/*
* Internet format:
* a.b.c.d
* a.b.c (with c treated as 16 bits)
* a.b (with b treated as 24 bits)
* a (with a treated as 32 bits)
*/
if (pp >= parts + 3)
return (0);
*pp++ = val;
c = *++src;
} else
break;
}
/*
* Check for trailing characters.
*/
if (c != '\0' && !isspace(c))
return (0);
/*
* Concoct the address according to
* the number of parts specified.
*/
n = pp - parts + 1;
/* inet_pton() takes dotted-quad only. it does not take shorthand. */
if (pton && n != 4)
return (0);
switch (n) {
case 0:
return (0); /* initial nondigit */
case 1: /* a -- 32 bits */
break;
case 2: /* a.b -- 8.24 bits */
if (parts[0] > 0xff || val > 0xffffff)
return (0);
val |= parts[0] << 24;
break;
case 3: /* a.b.c -- 8.8.16 bits */
if ((parts[0] | parts[1]) > 0xff || val > 0xffff)
return (0);
val |= (parts[0] << 24) | (parts[1] << 16);
break;
case 4: /* a.b.c.d -- 8.8.8.8 bits */
if ((parts[0] | parts[1] | parts[2] | val) > 0xff)
return (0);
val |= (parts[0] << 24) | (parts[1] << 16) | (parts[2] << 8);
break;
}
if (dst) {
val = htonl(val);
memcpy(dst, &val, INADDRSZ);
}
return (1);
}
/* int
* inet_pton6(src, dst)
* convert presentation level address to network order binary form.
* return:
* 1 if `src' is a valid [RFC1884 2.2] address, else 0.
* notice:
* (1) does not touch `dst' unless it's returning 1.
* (2) :: in a full address is silently ignored.
* credit:
* inspired by Mark Andrews.
* author:
* Paul Vixie, 1996.
*/
int inet_pton6(const char *src, u_char *dst)
{
static const char xdigits_l[] = "0123456789abcdef",
xdigits_u[] = "0123456789ABCDEF";
u_char tmp[IN6ADDRSZ], *tp, *endp, *colonp;
const char *xdigits, *curtok;
int ch, saw_xdigit;
u_int val;
memset((tp = tmp), '\0', IN6ADDRSZ);
endp = tp + IN6ADDRSZ;
colonp = NULL;
/* Leading :: requires some special handling. */
if (*src == ':')
if (*++src != ':')
return (0);
curtok = src;
saw_xdigit = 0;
val = 0;
while ((ch = *src++) != '\0') {
const char *pch;
if ((pch = strchr((xdigits = xdigits_l), ch)) == NULL)
pch = strchr((xdigits = xdigits_u), ch);
if (pch != NULL) {
val <<= 4;
val |= (pch - xdigits);
if (val > 0xffff)
return (0);
saw_xdigit = 1;
continue;
}
if (ch == ':') {
curtok = src;
if (!saw_xdigit) {
if (colonp)
return (0);
colonp = tp;
continue;
} else if (*src == '\0')
return (0);
if (tp + INT16SZ > endp)
return (0);
*tp++ = (u_char) (val >> 8) & 0xff;
*tp++ = (u_char) val & 0xff;
saw_xdigit = 0;
val = 0;
continue;
}
if (ch == '.' && ((tp + INADDRSZ) <= endp) &&
inet_pton4(curtok, tp, 1) > 0) {
tp += INADDRSZ;
saw_xdigit = 0;
break; /* '\0' was seen by inet_pton4(). */
}
return (0);
}
if (saw_xdigit) {
if (tp + INT16SZ > endp)
return (0);
*tp++ = (u_char) (val >> 8) & 0xff;
*tp++ = (u_char) val & 0xff;
}
if (colonp != NULL) {
/*
* Since some memmove()'s erroneously fail to handle
* overlapping regions, we'll do the shift by hand.
*/
const int n = tp - colonp;
int i;
if (tp == endp)
return (0);
for (i = 1; i <= n; i++) {
endp[- i] = colonp[n - i];
colonp[n - i] = 0;
}
tp = endp;
}
if (tp != endp)
return (0);
memcpy(dst, tmp, IN6ADDRSZ);
return (1);
}
/* int
* inet_pton(af, src, dst)
* convert from presentation format (which usually means ASCII printable)
* to network format (which is usually some kind of binary format).
* return:
* 1 if the address was valid for the specified address family
* 0 if the address wasn't valid (`dst' is untouched in this case)
* -1 if some other error occurred (`dst' is untouched in this case, too)
* author:
* Paul Vixie, 1996.
*/
int inet_pton(int af, const char *src, void *dst)
{
switch (af) {
case AF_INET:
return (inet_pton4(src, dst, 1));
case AF_INET6:
return (inet_pton6(src, dst));
default:
errno = EAFNOSUPPORT;
return (-1);
}
/* NOTREACHED */
}
#endif
#endif //WIN32
int
ccnet_netSetTOS (evutil_socket_t s, int tos)
{
#ifdef IP_TOS
return setsockopt( s, IPPROTO_IP, IP_TOS, (char*)&tos, sizeof( tos ) );
#else
return 0;
#endif
}
static evutil_socket_t
makeSocketNonBlocking (evutil_socket_t fd)
{
if (fd >= 0)
{
if (evutil_make_socket_nonblocking(fd))
{
ccnet_warning ("Couldn't make socket nonblock: %s",
evutil_socket_error_to_string(EVUTIL_SOCKET_ERROR()));
evutil_closesocket(fd);
fd = -1;
}
}
return fd;
}
static evutil_socket_t
createSocket (int family, int nonblock)
{
evutil_socket_t fd;
int ret;
fd = socket (family, SOCK_STREAM, 0);
if (fd < 0) {
ccnet_warning("create Socket failed %d\n", fd);
} else if (nonblock) {
int nodelay = 1;
fd = makeSocketNonBlocking( fd );
ret = setsockopt (fd, IPPROTO_TCP, TCP_NODELAY,
(char *)&nodelay, sizeof(nodelay));
if (ret < 0) {
ccnet_warning("setsockopt failed\n");
evutil_closesocket(fd);
return -1;
}
}
return fd;
}
evutil_socket_t
ccnet_net_open_tcp (const struct sockaddr *sa, int nonblock)
{
evutil_socket_t s;
int sa_len;
if( (s = createSocket(sa->sa_family, nonblock)) < 0 )
return -1;
#ifndef WIN32
if (sa->sa_family == AF_INET)
sa_len = sizeof (struct sockaddr_in);
else
sa_len = sizeof (struct sockaddr_in6);
#else
if (sa->sa_family == AF_INET)
sa_len = sizeof (struct sockaddr_in);
else
return -1;
#endif
if( (connect(s, sa, sa_len) < 0)
#ifdef WIN32
&& (sockerrno != WSAEWOULDBLOCK)
#endif
&& (sockerrno != EINPROGRESS) )
{
evutil_closesocket(s);
s = -1;
}
return s;
}
evutil_socket_t
ccnet_net_bind_tcp (int port, int nonblock)
{
#ifndef WIN32
int sockfd, n;
struct addrinfo hints, *res, *ressave;
char buf[10];
memset (&hints, 0,sizeof (struct addrinfo));
hints.ai_flags = AI_PASSIVE;
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
snprintf (buf, sizeof(buf), "%d", port);
if ( (n = getaddrinfo(NULL, buf, &hints, &res) ) != 0) {
ccnet_warning ("getaddrinfo fails: %s\n", gai_strerror(n));
return -1;
}
ressave = res;
do {
int on = 1;
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (sockfd < 0)
continue; /* error - try next one */
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)) < 0) {
ccnet_warning ("setsockopt of SO_REUSEADDR error\n");
continue;
}
if (nonblock)
sockfd = makeSocketNonBlocking (sockfd);
if (sockfd < 0)
continue; /* error - try next one */
if (bind(sockfd, res->ai_addr, res->ai_addrlen) == 0)
break; /* success */
close(sockfd); /* bind error - close and try next one */
} while ( (res = res->ai_next) != NULL);
freeaddrinfo (ressave);
if (res == NULL) {
ccnet_warning ("bind fails: %s\n", strerror(errno));
return -1;
}
return sockfd;
#else
evutil_socket_t s;
struct sockaddr_in sock;
const int type = AF_INET;
#if defined( SO_REUSEADDR ) || defined( SO_REUSEPORT )
int optval;
#endif
if ((s = createSocket(type, nonblock)) < 0)
return -1;
optval = 1;
setsockopt (s, SOL_SOCKET, SO_REUSEADDR, (char*)&optval, sizeof(optval));
memset(&sock, 0, sizeof(sock));
sock.sin_family = AF_INET;
sock.sin_addr.s_addr = INADDR_ANY;
sock.sin_port = htons(port);
if ( bind(s, (struct sockaddr *)&sock, sizeof(struct sockaddr_in)) < 0)
{
ccnet_warning ("bind fails: %s\n", strerror(errno));
evutil_closesocket (s);
return -1;
}
if (nonblock)
s = makeSocketNonBlocking (s);
return s;
#endif
}
evutil_socket_t
ccnet_net_accept (evutil_socket_t b, struct sockaddr_storage *cliaddr,
socklen_t *len, int nonblock)
{
evutil_socket_t s;
/* int nodelay = 1; */
s = accept (b, (struct sockaddr *)cliaddr, len);
/* setsockopt (s, IPPROTO_TCP, TCP_NODELAY, &nodelay, sizeof(nodelay)); */
if (nonblock)
makeSocketNonBlocking(s);
return s;
}
evutil_socket_t
ccnet_net_bind_v4 (const char *ipaddr, int *port)
{
evutil_socket_t sockfd;
struct sockaddr_in addr;
int on = 1;
sockfd = socket (AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {
ccnet_warning("create socket failed: %s\n", strerror(errno));
exit(-1);
}
memset (&addr, 0, sizeof (struct sockaddr_in));
addr.sin_family = AF_INET;
if (inet_aton(ipaddr, &addr.sin_addr) == 0) {
ccnet_warning ("Bad ip address %s\n", ipaddr);
return -1;
}
addr.sin_port = htons (*port);
if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, (char *)&on, sizeof(on)) < 0)
{
ccnet_warning ("setsockopt of SO_REUSEADDR error: %s\n",
strerror(errno));
return -1;
}
if ( bind(sockfd, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
ccnet_warning ("Bind error: %s\n", strerror (errno));
return -1;
}
if (*port == 0) {
struct sockaddr_storage ss;
socklen_t len;
len = sizeof(ss);
if (getsockname(sockfd, (struct sockaddr *)&ss, &len) < 0) {
ccnet_warning ("getsockname error: %s\n", strerror(errno));
return -1;
}
*port = sock_port ((struct sockaddr *)&ss);
}
return sockfd;
}
char *
sock_ntop(const struct sockaddr *sa, socklen_t salen)
{
static char str[128]; /* Unix domain is largest */
switch (sa->sa_family) {
case AF_INET: {
struct sockaddr_in *sin = (struct sockaddr_in *) sa;
if (inet_ntop(AF_INET, &sin->sin_addr, str, sizeof(str)) == NULL)
return(NULL);
return(str);
}
#ifdef IPv6
case AF_INET6: {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa;
if (inet_ntop(AF_INET6, &sin6->sin6_addr, str, sizeof(str) - 1) == NULL)
return(NULL);
return (str);
}
#endif
#ifndef WIN32
#ifdef AF_UNIX
case AF_UNIX: {
struct sockaddr_un *unp = (struct sockaddr_un *) sa;
/* OK to have no pathname bound to the socket: happens on
every connect() unless client calls bind() first. */
if (unp->sun_path[0] == 0)
strcpy(str, "(no pathname bound)");
else
snprintf(str, sizeof(str), "%s", unp->sun_path);
return(str);
}
#endif
#endif
default:
snprintf(str, sizeof(str), "sock_ntop: unknown AF_xxx: %d, len %d",
sa->sa_family, salen);
return(str);
}
return (NULL);
}
int
sock_pton (const char *addr_str, uint16_t port, struct sockaddr_storage *sa)
{
struct sockaddr_in *saddr = (struct sockaddr_in *) sa;
#ifndef WIN32
struct sockaddr_in6 *saddr6 = (struct sockaddr_in6 *) sa;
#endif
if (inet_pton (AF_INET, addr_str, &saddr->sin_addr) == 1 ) {
saddr->sin_family = AF_INET;
saddr->sin_port = htons (port);
return 0;
}
#ifndef WIN32
else if (inet_pton (AF_INET6, addr_str, &saddr6->sin6_addr) == 1)
{
saddr6->sin6_family = AF_INET6;
saddr6->sin6_port = htons (port);
return 0;
}
#endif
return -1;
}
/* return 1 if addr_str is a valid ipv4 or ipv6 address */
int
is_valid_ipaddr (const char *addr_str)
{
struct sockaddr_storage addr;
if (!addr_str)
return 0;
if (sock_pton(addr_str, 0, &addr) < 0)
return 0;
return 1;
}
uint16_t
sock_port (const struct sockaddr *sa)
{
switch (sa->sa_family) {
case AF_INET: {
struct sockaddr_in *sin = (struct sockaddr_in *) sa;
return ntohs(sin->sin_port);
}
#ifdef IPv6
case AF_INET6: {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) sa;
return ntohs(sin6->sin6_port);
}
#endif
default:
return 0;
}
return 0;
}
evutil_socket_t
udp_client (const char *host, const char *serv,
struct sockaddr **saptr, socklen_t *lenp)
{
evutil_socket_t sockfd;
int n;
struct addrinfo hints, *res, *ressave;
memset (&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
if ((n = getaddrinfo(host, serv, &hints, &res)) != 0) {
ccnet_warning ("udp_client error for %s, %s: %s",
host, serv, gai_strerror(n));
return -1;
}
ressave = res;
do {
sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (sockfd >= 0)
break; /* success */
} while ( (res = res->ai_next) != NULL);
if (res == NULL) { /* errno set from final socket() */
ccnet_warning ("udp_client error for %s, %s", host, serv);
freeaddrinfo (ressave);
return -1;
}
*saptr = malloc(res->ai_addrlen);
memcpy(*saptr, res->ai_addr, res->ai_addrlen);
*lenp = res->ai_addrlen;
freeaddrinfo(ressave);
return (sockfd);
}
int
family_to_level(int family)
{
switch (family) {
case AF_INET:
return IPPROTO_IP;
#ifdef IPV6
case AF_INET6:
return IPPROTO_IPV6;
#endif
default:
return -1;
}
}
#ifdef WIN32
static int
mcast_join(evutil_socket_t sockfd, const struct sockaddr *grp, socklen_t grplen,
const char *ifname, u_int ifindex)
{
int optval = 3;
int sockm;
if (setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_TTL,
(char *)&optval, sizeof(int)) == SOCKET_ERROR) {
ccnet_warning("Fail to set socket multicast TTL, LastError=%d\n",
WSAGetLastError());
return -1;
}
optval = 0;
if (setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_LOOP,
(char *)&optval, sizeof(int)) == SOCKET_ERROR) {
ccnet_warning("Fail to set socket multicast LOOP, LastError=%d\n",
WSAGetLastError());
return -1;
}
sockm = WSAJoinLeaf (sockfd, grp, grplen, NULL, NULL, NULL, NULL, JL_BOTH);
if (sockm == INVALID_SOCKET) {
ccnet_warning("Fail to join multicast group, LastError=%d\n",
WSAGetLastError());
return -1;
}
return sockm;
}
evutil_socket_t
create_multicast_sock (struct sockaddr *sasend, socklen_t salen)
{
int ret;
const int on = 1;
evutil_socket_t recvfd;
struct sockaddr *sarecv;
recvfd = WSASocket (AF_INET, SOCK_DGRAM, 0, NULL, 0,
WSA_FLAG_MULTIPOINT_C_LEAF|WSA_FLAG_MULTIPOINT_D_LEAF
|WSA_FLAG_OVERLAPPED);
if (recvfd < 0) {
ccnet_warning ("Create multicast listen socket fails: %d\n",
WSAGetLastError());
return;
}
ret = setsockopt(recvfd, SOL_SOCKET, SO_REUSEADDR, (char *)&on, sizeof(on));
if (ret != 0) {
ccnet_warning("Failed to setsockopt SO_REUSEADDR, WSAGetLastError=%d\n",
WSAGetLastError());
return;
}
sarecv = malloc(salen);
memcpy(sarecv, sasend, salen);
struct sockaddr_in *saddr = (struct sockaddr_in *)sarecv;
saddr->sin_addr.s_addr = INADDR_ANY;
if (bind(recvfd, sarecv, salen) < 0) {
ccnet_warning("Bind multicast bind socket failed LastError=%d\n",
WSAGetLastError());
free (sarecv);
return -1;;
}
free (sarecv);
if (mcast_join(recvfd, sasend, salen, NULL, 0) < 0) {
ccnet_warning ("mcast_join error: %s\n", strerror(errno));
return -1;
}
return recvfd;
}
#else
static int
mcast_join(evutil_socket_t sockfd, const struct sockaddr *grp, socklen_t grplen,
const char *ifname, u_int ifindex)
{
#if (defined MCAST_JOIN_GROUP) && (! defined __APPLE__)
struct group_req req;
if (ifindex > 0) {
req.gr_interface = ifindex;
} else if (ifname != NULL) {
if ( (req.gr_interface = if_nametoindex(ifname)) == 0) {
errno = ENXIO; /* i/f name not found */
return(-1);
}
} else
req.gr_interface = 0;
if (grplen > sizeof(req.gr_group)) {
errno = EINVAL;
return -1;
}
memcpy(&req.gr_group, grp, grplen);
return (setsockopt(sockfd, family_to_level(grp->sa_family),
MCAST_JOIN_GROUP, &req, sizeof(req)));
#else
/* end mcast_join1 */
/* include mcast_join2 */
switch (grp->sa_family) {
case AF_INET: {
struct ip_mreq mreq;
struct ifreq ifreq;
memcpy(&mreq.imr_multiaddr.s_addr,
&((const struct sockaddr_in *) grp)->sin_addr,
sizeof(struct in_addr));
if (ifindex > 0) {
if (if_indextoname(ifindex, ifreq.ifr_name) == NULL) {
errno = ENXIO; /* i/f index not found */
return(-1);
}
goto doioctl;
} else if (ifname != NULL) {
strncpy(ifreq.ifr_name, ifname, IFNAMSIZ);
doioctl:
if (ioctl(sockfd, SIOCGIFADDR, &ifreq) < 0)
return(-1);
memcpy(&mreq.imr_interface,
&((struct sockaddr_in *) &ifreq.ifr_addr)->sin_addr,
sizeof(struct in_addr));
} else
mreq.imr_interface.s_addr = htonl(INADDR_ANY);
return(setsockopt(sockfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreq, sizeof(mreq)));
}
/* end mcast_join2 */
/* include mcast_join3 */
#ifdef IPV6
#ifndef IPV6_JOIN_GROUP /* APIv0 compatibility */
#define IPV6_JOIN_GROUP IPV6_ADD_MEMBERSHIP
#endif
case AF_INET6: {
struct ipv6_mreq mreq6;
memcpy(&mreq6.ipv6mr_multiaddr,
&((const struct sockaddr_in6 *) grp)->sin6_addr,
sizeof(struct in6_addr));
if (ifindex > 0) {
mreq6.ipv6mr_interface = ifindex;
} else if (ifname != NULL) {
if ( (mreq6.ipv6mr_interface = if_nametoindex(ifname)) == 0) {
errno = ENXIO; /* i/f name not found */
return(-1);
}
} else
mreq6.ipv6mr_interface = 0;
return(setsockopt(sockfd, IPPROTO_IPV6, IPV6_JOIN_GROUP,
&mreq6, sizeof(mreq6)));
}
#endif
default:
errno = EAFNOSUPPORT;
return(-1);
}
#endif
return -1;
}
evutil_socket_t
create_multicast_sock (struct sockaddr *sasend, socklen_t salen)
{
int ret;
const int on = 1;
evutil_socket_t recvfd;
struct sockaddr *sarecv;
if ( (recvfd = socket (sasend->sa_family, SOCK_DGRAM, 0)) < 0) {
ccnet_warning ("Create multicast listen socket fails: %s\n",
strerror(errno));
return -1;
}
ret = setsockopt(recvfd, SOL_SOCKET, SO_REUSEADDR, (char *)&on, sizeof(on));
if (ret < 0)
ccnet_warning("Failed to setsockopt SO_REUSEADDR\n");
sarecv = malloc(salen);
memcpy(sarecv, sasend, salen);
if (bind(recvfd, sarecv, salen) < 0) {
ccnet_warning ("Bind multicast listen socket fails: %s\n",
strerror(errno));
free (sarecv);
return -1;
}
free (sarecv);
if (mcast_join(recvfd, sasend, salen, NULL, 0) < 0) {
ccnet_warning ("mcast_join error: %s\n", strerror(errno));
return -1;
}
return recvfd;
}
#endif
int
sockfd_to_family(evutil_socket_t sockfd)
{
struct sockaddr_storage ss;
socklen_t len;
len = sizeof(ss);
if (getsockname(sockfd, (struct sockaddr *) &ss, &len) < 0)
return(-1);
return(ss.ss_family);
}
int
mcast_set_loop(evutil_socket_t sockfd, int onoff)
{
#ifndef WIN32
switch (sockfd_to_family(sockfd)) {
case AF_INET: {
u_char flag;
flag = onoff;
return(setsockopt(sockfd, IPPROTO_IP, IP_MULTICAST_LOOP,
&flag, sizeof(flag)));
}
#ifdef IPV6
case AF_INET6: {
u_int flag;
flag = onoff;
return(setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
&flag, sizeof(flag)));
}
#endif
default:
errno = EAFNOSUPPORT;
return(-1);
}
#else
return -1;
#endif /* WIN32 */
}