so-vits-svc/preprocess_hubert_f0.py

173 lines
6.7 KiB
Python
Raw Permalink Normal View History

2023-06-26 14:57:53 +08:00
import argparse
import logging
2023-03-10 18:11:04 +08:00
import os
2023-05-16 13:17:51 +08:00
import random
2023-06-26 14:57:53 +08:00
from concurrent.futures import ProcessPoolExecutor
from glob import glob
from random import shuffle
import librosa
import numpy as np
2023-06-26 14:57:53 +08:00
import torch
2023-07-22 20:18:20 +08:00
import torch.multiprocessing as mp
2023-07-22 23:02:52 +08:00
from loguru import logger
2023-03-10 18:11:04 +08:00
from tqdm import tqdm
2023-06-26 14:57:53 +08:00
import diffusion.logger.utils as du
import utils
from diffusion.vocoder import Vocoder
from modules.mel_processing import spectrogram_torch
2023-03-10 18:11:04 +08:00
logging.getLogger("numba").setLevel(logging.WARNING)
2023-05-16 13:17:51 +08:00
logging.getLogger("matplotlib").setLevel(logging.WARNING)
2023-03-10 18:11:04 +08:00
hps = utils.get_hparams_from_file("configs/config.json")
2023-05-16 13:17:51 +08:00
dconfig = du.load_config("configs/diffusion.yaml")
2023-03-10 18:11:04 +08:00
sampling_rate = hps.data.sampling_rate
hop_length = hps.data.hop_length
2023-05-14 15:22:20 +08:00
speech_encoder = hps["model"]["speech_encoder"]
2023-03-10 18:11:04 +08:00
2023-05-16 13:17:51 +08:00
2023-07-23 23:27:58 +08:00
def process_one(filename, hmodel, f0p, device, diff=False, mel_extractor=None):
2023-03-10 18:11:04 +08:00
wav, sr = librosa.load(filename, sr=sampling_rate)
2023-05-16 13:17:51 +08:00
audio_norm = torch.FloatTensor(wav)
audio_norm = audio_norm.unsqueeze(0)
2023-03-10 18:11:04 +08:00
soft_path = filename + ".soft.pt"
if not os.path.exists(soft_path):
wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
wav16k = torch.from_numpy(wav16k).to(device)
2023-05-14 14:39:07 +08:00
c = hmodel.encoder(wav16k)
2023-03-10 18:11:04 +08:00
torch.save(c.cpu(), soft_path)
2023-03-10 18:11:04 +08:00
f0_path = filename + ".f0.npy"
if not os.path.exists(f0_path):
2023-05-14 14:39:07 +08:00
f0_predictor = utils.get_f0_predictor(f0p,sampling_rate=sampling_rate, hop_length=hop_length,device=None,threshold=0.05)
2023-05-13 23:45:56 +08:00
f0,uv = f0_predictor.compute_f0_uv(
2023-05-13 15:33:40 +08:00
wav
)
2023-05-13 23:45:56 +08:00
np.save(f0_path, np.asanyarray((f0,uv),dtype=object))
spec_path = filename.replace(".wav", ".spec.pt")
if not os.path.exists(spec_path):
# Process spectrogram
# The following code can't be replaced by torch.FloatTensor(wav)
# because load_wav_to_torch return a tensor that need to be normalized
if sr != hps.data.sampling_rate:
raise ValueError(
"{} SR doesn't match target {} SR".format(
sr, hps.data.sampling_rate
)
)
2023-05-16 13:17:51 +08:00
#audio_norm = audio / hps.data.max_wav_value
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_path)
2023-05-28 21:47:32 +08:00
if diff or hps.model.vol_embedding:
2023-05-16 13:17:51 +08:00
volume_path = filename + ".vol.npy"
volume_extractor = utils.Volume_Extractor(hop_length)
if not os.path.exists(volume_path):
volume = volume_extractor.extract(audio_norm)
np.save(volume_path, volume.to('cpu').numpy())
2023-05-28 21:47:32 +08:00
if diff:
2023-05-16 13:17:51 +08:00
mel_path = filename + ".mel.npy"
if not os.path.exists(mel_path) and mel_extractor is not None:
mel_t = mel_extractor.extract(audio_norm.to(device), sampling_rate)
mel = mel_t.squeeze().to('cpu').numpy()
np.save(mel_path, mel)
aug_mel_path = filename + ".aug_mel.npy"
aug_vol_path = filename + ".aug_vol.npy"
max_amp = float(torch.max(torch.abs(audio_norm))) + 1e-5
max_shift = min(1, np.log10(1/max_amp))
log10_vol_shift = random.uniform(-1, max_shift)
keyshift = random.uniform(-5, 5)
if mel_extractor is not None:
aug_mel_t = mel_extractor.extract(audio_norm * (10 ** log10_vol_shift), sampling_rate, keyshift = keyshift)
aug_mel = aug_mel_t.squeeze().to('cpu').numpy()
aug_vol = volume_extractor.extract(audio_norm * (10 ** log10_vol_shift))
if not os.path.exists(aug_mel_path):
np.save(aug_mel_path,np.asanyarray((aug_mel,keyshift),dtype=object))
if not os.path.exists(aug_vol_path):
np.save(aug_vol_path,aug_vol.to('cpu').numpy())
2023-07-23 22:12:04 +08:00
def process_batch(file_chunk, f0p, diff=False, mel_extractor=None, device="cpu"):
2023-07-22 22:01:44 +08:00
logger.info("Loading speech encoder for content...")
2023-07-22 14:30:54 +08:00
rank = mp.current_process()._identity
rank = rank[0] if len(rank) > 0 else 0
if torch.cuda.is_available():
gpu_id = rank % torch.cuda.device_count()
device = torch.device(f"cuda:{gpu_id}")
2023-07-22 22:01:44 +08:00
logger.info(f"Rank {rank} uses device {device}")
hmodel = utils.get_speech_encoder(speech_encoder, device=device)
2023-07-22 22:01:44 +08:00
logger.info(f"Loaded speech encoder for rank {rank}")
2023-07-31 00:03:07 +08:00
for filename in tqdm(file_chunk, position = rank):
2023-07-23 23:27:58 +08:00
process_one(filename, hmodel, f0p, device, diff, mel_extractor)
2023-07-23 22:12:04 +08:00
def parallel_process(filenames, num_processes, f0p, diff, mel_extractor, device):
with ProcessPoolExecutor(max_workers=num_processes) as executor:
tasks = []
for i in range(num_processes):
start = int(i * len(filenames) / num_processes)
end = int((i + 1) * len(filenames) / num_processes)
file_chunk = filenames[start:end]
2023-07-23 22:12:04 +08:00
tasks.append(executor.submit(process_batch, file_chunk, f0p, diff, mel_extractor, device=device))
2023-07-31 00:03:07 +08:00
for task in tqdm(tasks, position = 0):
task.result()
2023-03-10 18:11:04 +08:00
if __name__ == "__main__":
parser = argparse.ArgumentParser()
2023-07-23 22:12:04 +08:00
parser.add_argument('-d', '--device', type=str, default=None)
parser.add_argument(
"--in_dir", type=str, default="dataset/44k", help="path to input dir"
)
parser.add_argument(
2023-05-16 13:17:51 +08:00
'--use_diff',action='store_true', help='Whether to use the diffusion model'
2023-05-14 14:39:07 +08:00
)
parser.add_argument(
2023-08-02 02:06:49 +08:00
'--f0_predictor', type=str, default="rmvpe", help='Select F0 predictor, can select crepe,pm,dio,harvest,rmvpe,fcpe|default: pm(note: crepe is original F0 using mean filter)'
2023-05-15 01:23:46 +08:00
)
parser.add_argument(
'--num_processes', type=int, default=1, help='You are advised to set the number of processes to the same as the number of CPU cores'
)
2023-03-10 18:11:04 +08:00
args = parser.parse_args()
2023-05-14 14:39:07 +08:00
f0p = args.f0_predictor
2023-07-23 22:12:04 +08:00
device = args.device
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
2023-05-14 14:39:07 +08:00
print(speech_encoder)
2023-07-31 00:03:07 +08:00
logger.info("Using device: " + str(device))
logger.info("Using SpeechEncoder: " + speech_encoder)
logger.info("Using extractor: " + f0p)
2023-07-31 00:03:07 +08:00
logger.info("Using diff Mode: " + str(args.use_diff))
2023-05-16 13:17:51 +08:00
if args.use_diff:
print("use_diff")
print("Loading Mel Extractor...")
2023-07-23 22:12:04 +08:00
mel_extractor = Vocoder(dconfig.vocoder.type, dconfig.vocoder.ckpt, device=device)
2023-05-16 13:17:51 +08:00
print("Loaded Mel Extractor.")
else:
mel_extractor = None
filenames = glob(f"{args.in_dir}/*/*.wav", recursive=True) # [:10]
2023-03-10 18:11:04 +08:00
shuffle(filenames)
2023-07-22 14:30:54 +08:00
mp.set_start_method("spawn", force=True)
num_processes = args.num_processes
if num_processes == 0:
num_processes = os.cpu_count()
2023-07-23 22:12:04 +08:00
parallel_process(filenames, num_processes, f0p, args.use_diff, mel_extractor, device)