so-vits-svc/train_diff.py

78 lines
2.5 KiB
Python
Raw Permalink Normal View History

2023-05-15 01:23:46 +08:00
import argparse
2023-06-26 14:57:53 +08:00
2023-05-15 01:23:46 +08:00
import torch
2023-07-22 23:02:52 +08:00
from loguru import logger
2023-05-15 01:23:46 +08:00
from torch.optim import lr_scheduler
2023-06-26 14:57:53 +08:00
2023-05-15 01:23:46 +08:00
from diffusion.data_loaders import get_data_loaders
2023-06-26 14:57:53 +08:00
from diffusion.logger import utils
2023-05-15 01:23:46 +08:00
from diffusion.solver import train
from diffusion.unit2mel import Unit2Mel
from diffusion.vocoder import Vocoder
2023-07-22 23:02:52 +08:00
2023-05-15 01:23:46 +08:00
def parse_args(args=None, namespace=None):
"""Parse command-line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument(
"-c",
"--config",
type=str,
required=True,
help="path to the config file")
return parser.parse_args(args=args, namespace=namespace)
if __name__ == '__main__':
# parse commands
cmd = parse_args()
# load config
args = utils.load_config(cmd.config)
2023-07-22 22:04:44 +08:00
logger.info(' > config:'+ cmd.config)
logger.info(' > exp:'+ args.env.expdir)
2023-05-15 01:23:46 +08:00
# load vocoder
vocoder = Vocoder(args.vocoder.type, args.vocoder.ckpt, device=args.device)
# load model
model = Unit2Mel(
args.data.encoder_out_channels,
args.model.n_spk,
args.model.use_pitch_aug,
vocoder.dimension,
args.model.n_layers,
args.model.n_chans,
2023-06-16 01:08:20 +08:00
args.model.n_hidden,
args.model.timesteps,
args.model.k_step_max
)
2023-05-15 01:23:46 +08:00
2023-07-22 22:04:44 +08:00
logger.info(f' > Now model timesteps is {model.timesteps}, and k_step_max is {model.k_step_max}')
2023-05-15 01:23:46 +08:00
# load parameters
optimizer = torch.optim.AdamW(model.parameters())
initial_global_step, model, optimizer = utils.load_model(args.env.expdir, model, optimizer, device=args.device)
for param_group in optimizer.param_groups:
2023-05-19 19:55:30 +08:00
param_group['initial_lr'] = args.train.lr
param_group['lr'] = args.train.lr * (args.train.gamma ** max(((initial_global_step-2)//args.train.decay_step),0) )
2023-05-15 01:23:46 +08:00
param_group['weight_decay'] = args.train.weight_decay
2023-05-19 19:55:30 +08:00
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.train.decay_step, gamma=args.train.gamma,last_epoch=initial_global_step-2)
2023-05-15 01:23:46 +08:00
# device
if args.device == 'cuda':
torch.cuda.set_device(args.env.gpu_id)
model.to(args.device)
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.to(args.device)
# datas
loader_train, loader_valid = get_data_loaders(args, whole_audio=False)
# run
train(args, initial_global_step, model, optimizer, scheduler, vocoder, loader_train, loader_valid)