so-vits-svc/inference_main.py

123 lines
6.4 KiB
Python
Raw Normal View History

2023-03-10 18:11:04 +08:00
import io
import logging
import time
from pathlib import Path
import librosa
import matplotlib.pyplot as plt
import numpy as np
import soundfile
from inference import infer_tool
from inference import slicer
from inference.infer_tool import Svc
logging.getLogger('numba').setLevel(logging.WARNING)
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
def main():
import argparse
parser = argparse.ArgumentParser(description='sovits4 inference')
# 一定要设置的部分
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径')
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
2023-03-20 14:08:55 +08:00
parser.add_argument('-cl', '--clip', type=float, default=0, help='音频自动切片0为不切片单位为秒/s')
2023-03-10 18:11:04 +08:00
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], help='wav文件名列表放在raw文件夹下')
parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nen'], help='合成目标说话人名称')
# 可选项部分
parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比范围0-1若没有训练聚类模型则填0即可')
2023-03-20 14:09:41 +08:00
parser.add_argument('-lg', '--linear_gradient', type=float, default=0, help='两段音频切片的交叉淡入长度如果自动切片后出现人声不连贯可调整该数值如果连贯建议采用默认值0单位为秒/s')
2023-03-10 18:11:04 +08:00
# 不用动的部分
parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40嘈杂的音频可以-30干声保留呼吸可以-50')
parser.add_argument('-d', '--device', type=str, default=None, help='推理设备None则为自动选择cpu和gpu')
parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数由于未知原因开头结尾会有异响pad一小段静音段后就不会出现')
parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
args = parser.parse_args()
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
infer_tool.mkdir(["raw", "results"])
clean_names = args.clean_names
trans = args.trans
spk_list = args.spk_list
slice_db = args.slice_db
wav_format = args.wav_format
auto_predict_f0 = args.auto_predict_f0
cluster_infer_ratio = args.cluster_infer_ratio
noice_scale = args.noice_scale
pad_seconds = args.pad_seconds
2023-03-20 14:08:55 +08:00
clip = args.clip
lg = args.linear_gradient
2023-03-10 18:11:04 +08:00
infer_tool.fill_a_to_b(trans, clean_names)
for clean_name, tran in zip(clean_names, trans):
raw_audio_path = f"raw/{clean_name}"
if "." not in raw_audio_path:
raw_audio_path += ".wav"
infer_tool.format_wav(raw_audio_path)
wav_path = Path(raw_audio_path).with_suffix('.wav')
chunks = slicer.cut(wav_path, db_thresh=slice_db)
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
2023-03-20 14:08:55 +08:00
per_size = int(clip*audio_sr)
lg_size = int(lg*audio_sr)
lg = np.linspace(0,1,lg_size) if lg_size!=0 else 0
2023-03-10 18:11:04 +08:00
for spk in spk_list:
audio = []
for (slice_tag, data) in audio_data:
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
if slice_tag:
print('jump empty segment')
_audio = np.zeros(length)
2023-03-20 14:08:55 +08:00
audio.extend(list(infer_tool.pad_array(_audio, length)))
continue
if per_size != 0:
datas = infer_tool.split_list_by_n(data, per_size,lg_size)
2023-03-10 18:11:04 +08:00
else:
2023-03-20 14:08:55 +08:00
datas = [data]
for k,dat in enumerate(datas):
per_length = int(np.ceil(len(dat) / audio_sr * svc_model.target_sample)) if clip!=0 else length
if clip!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
2023-03-10 18:11:04 +08:00
# padd
pad_len = int(audio_sr * pad_seconds)
2023-03-20 14:08:55 +08:00
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
2023-03-10 18:11:04 +08:00
raw_path = io.BytesIO()
2023-03-20 14:08:55 +08:00
soundfile.write(raw_path, dat, audio_sr, format="wav")
2023-03-10 18:11:04 +08:00
raw_path.seek(0)
out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noice_scale=noice_scale
)
_audio = out_audio.cpu().numpy()
pad_len = int(svc_model.target_sample * pad_seconds)
_audio = _audio[pad_len:-pad_len]
2023-03-20 14:08:55 +08:00
_audio = infer_tool.pad_array(_audio, per_length)
if lg_size!=0 and k!=0:
lg1 = audio[-lg_size:]
lg2 = _audio[0:lg_size]
lg_pre = lg1*(1-lg)+lg2*lg
audio = audio[0:-lg_size]
audio.extend(lg_pre)
_audio = _audio[lg_size:]
audio.extend(list(_audio))
2023-03-10 18:11:04 +08:00
key = "auto" if auto_predict_f0 else f"{tran}key"
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
if __name__ == '__main__':
main()