2023-03-10 18:11:04 +08:00
|
|
|
|
import io
|
|
|
|
|
import logging
|
|
|
|
|
import time
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
import librosa
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
import numpy as np
|
|
|
|
|
import soundfile
|
|
|
|
|
|
|
|
|
|
from inference import infer_tool
|
|
|
|
|
from inference import slicer
|
|
|
|
|
from inference.infer_tool import Svc
|
|
|
|
|
|
|
|
|
|
logging.getLogger('numba').setLevel(logging.WARNING)
|
|
|
|
|
chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='sovits4 inference')
|
|
|
|
|
|
|
|
|
|
# 一定要设置的部分
|
|
|
|
|
parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径')
|
|
|
|
|
parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
|
2023-04-04 22:44:55 +08:00
|
|
|
|
parser.add_argument('-cl', '--clip', type=float, default=0, help='音频强制切片,默认0为自动切片,单位为秒/s')
|
2023-03-10 18:11:04 +08:00
|
|
|
|
parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下')
|
|
|
|
|
parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
|
|
|
|
|
parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nen'], help='合成目标说话人名称')
|
|
|
|
|
|
|
|
|
|
# 可选项部分
|
2023-04-14 13:29:19 +08:00
|
|
|
|
parser.add_argument('-a', '--auto_predict_f0', type=bool, default=False, help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
|
2023-03-10 18:11:04 +08:00
|
|
|
|
parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
|
2023-04-04 22:44:55 +08:00
|
|
|
|
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则默认0即可')
|
|
|
|
|
parser.add_argument('-lg', '--linear_gradient', type=float, default=0, help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
|
2023-05-13 15:33:40 +08:00
|
|
|
|
parser.add_argument('-f0p', '--f0_predictor', type=str, default="pm", help='选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)')
|
2023-04-09 01:01:48 +08:00
|
|
|
|
parser.add_argument('-eh', '--enhance', type=bool, default=False, help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭')
|
2023-04-14 13:29:19 +08:00
|
|
|
|
|
2023-03-10 18:11:04 +08:00
|
|
|
|
# 不用动的部分
|
|
|
|
|
parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
|
|
|
|
|
parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
|
|
|
|
|
parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
|
|
|
|
|
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
|
|
|
|
|
parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
|
2023-03-20 16:26:40 +08:00
|
|
|
|
parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75, help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭')
|
2023-04-09 01:01:48 +08:00
|
|
|
|
parser.add_argument('-eak', '--enhancer_adaptive_key', type=int, default=0, help='使增强器适应更高的音域(单位为半音数)|默认为0')
|
2023-05-13 15:33:40 +08:00
|
|
|
|
parser.add_argument('-ft', '--f0_filter_threshold', type=float, default=0.05,help='F0过滤阈值,只有使用crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音')
|
2023-04-17 18:31:15 +08:00
|
|
|
|
|
|
|
|
|
|
2023-03-10 18:11:04 +08:00
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
clean_names = args.clean_names
|
|
|
|
|
trans = args.trans
|
|
|
|
|
spk_list = args.spk_list
|
|
|
|
|
slice_db = args.slice_db
|
|
|
|
|
wav_format = args.wav_format
|
|
|
|
|
auto_predict_f0 = args.auto_predict_f0
|
|
|
|
|
cluster_infer_ratio = args.cluster_infer_ratio
|
|
|
|
|
noice_scale = args.noice_scale
|
|
|
|
|
pad_seconds = args.pad_seconds
|
2023-03-20 14:08:55 +08:00
|
|
|
|
clip = args.clip
|
|
|
|
|
lg = args.linear_gradient
|
2023-03-20 16:26:40 +08:00
|
|
|
|
lgr = args.linear_gradient_retain
|
2023-05-13 15:33:40 +08:00
|
|
|
|
f0p = args.f0_predictor
|
2023-04-09 01:01:48 +08:00
|
|
|
|
enhance = args.enhance
|
|
|
|
|
enhancer_adaptive_key = args.enhancer_adaptive_key
|
2023-04-17 18:36:43 +08:00
|
|
|
|
cr_threshold = args.f0_filter_threshold
|
2023-04-09 01:01:48 +08:00
|
|
|
|
|
|
|
|
|
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path,enhance)
|
|
|
|
|
infer_tool.mkdir(["raw", "results"])
|
2023-03-10 18:11:04 +08:00
|
|
|
|
|
|
|
|
|
infer_tool.fill_a_to_b(trans, clean_names)
|
|
|
|
|
for clean_name, tran in zip(clean_names, trans):
|
|
|
|
|
raw_audio_path = f"raw/{clean_name}"
|
|
|
|
|
if "." not in raw_audio_path:
|
|
|
|
|
raw_audio_path += ".wav"
|
|
|
|
|
infer_tool.format_wav(raw_audio_path)
|
|
|
|
|
wav_path = Path(raw_audio_path).with_suffix('.wav')
|
|
|
|
|
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
|
|
|
|
audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
|
2023-03-20 14:08:55 +08:00
|
|
|
|
per_size = int(clip*audio_sr)
|
|
|
|
|
lg_size = int(lg*audio_sr)
|
2023-03-20 16:26:40 +08:00
|
|
|
|
lg_size_r = int(lg_size*lgr)
|
|
|
|
|
lg_size_c_l = (lg_size-lg_size_r)//2
|
|
|
|
|
lg_size_c_r = lg_size-lg_size_r-lg_size_c_l
|
2023-05-10 00:58:38 +08:00
|
|
|
|
lg_2 = np.linspace(0,1,lg_size_r) if lg_size!=0 else 0
|
2023-03-10 18:11:04 +08:00
|
|
|
|
|
|
|
|
|
for spk in spk_list:
|
|
|
|
|
audio = []
|
|
|
|
|
for (slice_tag, data) in audio_data:
|
|
|
|
|
print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
|
2023-03-20 16:26:40 +08:00
|
|
|
|
|
2023-03-10 18:11:04 +08:00
|
|
|
|
length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
|
|
|
|
|
if slice_tag:
|
|
|
|
|
print('jump empty segment')
|
|
|
|
|
_audio = np.zeros(length)
|
2023-03-20 14:08:55 +08:00
|
|
|
|
audio.extend(list(infer_tool.pad_array(_audio, length)))
|
|
|
|
|
continue
|
|
|
|
|
if per_size != 0:
|
|
|
|
|
datas = infer_tool.split_list_by_n(data, per_size,lg_size)
|
2023-03-10 18:11:04 +08:00
|
|
|
|
else:
|
2023-03-20 14:08:55 +08:00
|
|
|
|
datas = [data]
|
|
|
|
|
for k,dat in enumerate(datas):
|
|
|
|
|
per_length = int(np.ceil(len(dat) / audio_sr * svc_model.target_sample)) if clip!=0 else length
|
|
|
|
|
if clip!=0: print(f'###=====segment clip start, {round(len(dat) / audio_sr, 3)}s======')
|
2023-03-10 18:11:04 +08:00
|
|
|
|
# padd
|
|
|
|
|
pad_len = int(audio_sr * pad_seconds)
|
2023-03-20 14:08:55 +08:00
|
|
|
|
dat = np.concatenate([np.zeros([pad_len]), dat, np.zeros([pad_len])])
|
2023-03-10 18:11:04 +08:00
|
|
|
|
raw_path = io.BytesIO()
|
2023-03-20 14:08:55 +08:00
|
|
|
|
soundfile.write(raw_path, dat, audio_sr, format="wav")
|
2023-03-10 18:11:04 +08:00
|
|
|
|
raw_path.seek(0)
|
|
|
|
|
out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
|
|
|
|
|
cluster_infer_ratio=cluster_infer_ratio,
|
|
|
|
|
auto_predict_f0=auto_predict_f0,
|
2023-04-04 15:47:05 +08:00
|
|
|
|
noice_scale=noice_scale,
|
2023-05-13 15:33:40 +08:00
|
|
|
|
f0_predictor = f0p,
|
2023-04-17 18:31:15 +08:00
|
|
|
|
enhancer_adaptive_key = enhancer_adaptive_key,
|
|
|
|
|
cr_threshold = cr_threshold
|
2023-03-10 18:11:04 +08:00
|
|
|
|
)
|
|
|
|
|
_audio = out_audio.cpu().numpy()
|
|
|
|
|
pad_len = int(svc_model.target_sample * pad_seconds)
|
|
|
|
|
_audio = _audio[pad_len:-pad_len]
|
2023-03-20 14:08:55 +08:00
|
|
|
|
_audio = infer_tool.pad_array(_audio, per_length)
|
|
|
|
|
if lg_size!=0 and k!=0:
|
2023-03-20 16:26:40 +08:00
|
|
|
|
lg1 = audio[-(lg_size_r+lg_size_c_r):-lg_size_c_r] if lgr != 1 else audio[-lg_size:]
|
|
|
|
|
lg2 = _audio[lg_size_c_l:lg_size_c_l+lg_size_r] if lgr != 1 else _audio[0:lg_size]
|
2023-05-10 00:58:38 +08:00
|
|
|
|
lg_pre = lg1*(1-lg_2)+lg2*lg_2
|
2023-03-20 16:26:40 +08:00
|
|
|
|
audio = audio[0:-(lg_size_r+lg_size_c_r)] if lgr != 1 else audio[0:-lg_size]
|
2023-03-20 14:08:55 +08:00
|
|
|
|
audio.extend(lg_pre)
|
2023-03-20 16:26:40 +08:00
|
|
|
|
_audio = _audio[lg_size_c_l+lg_size_r:] if lgr != 1 else _audio[lg_size:]
|
2023-03-20 14:08:55 +08:00
|
|
|
|
audio.extend(list(_audio))
|
2023-03-10 18:11:04 +08:00
|
|
|
|
key = "auto" if auto_predict_f0 else f"{tran}key"
|
|
|
|
|
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
|
|
|
|
|
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
|
|
|
|
|
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
|
2023-04-09 01:01:48 +08:00
|
|
|
|
svc_model.clear_empty()
|
|
|
|
|
|
2023-03-10 18:11:04 +08:00
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
main()
|