mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-01-09 04:27:31 +08:00
commit
01071d58a4
108
modules/F0Predictor/FCPEF0Predictor.py
Normal file
108
modules/F0Predictor/FCPEF0Predictor.py
Normal file
@ -0,0 +1,108 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modules.F0Predictor.F0Predictor import F0Predictor
|
||||
|
||||
from .fcpe.model import FCPEInfer
|
||||
|
||||
|
||||
class FCPEF0Predictor(F0Predictor):
|
||||
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, dtype=torch.float32, device=None, sampling_rate=44100,
|
||||
threshold=0.05):
|
||||
self.fcpe = FCPEInfer(model_path="pretrain/fcpe.pt", device=device, dtype=dtype)
|
||||
self.hop_length = hop_length
|
||||
self.f0_min = f0_min
|
||||
self.f0_max = f0_max
|
||||
if device is None:
|
||||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
else:
|
||||
self.device = device
|
||||
self.threshold = threshold
|
||||
self.sampling_rate = sampling_rate
|
||||
self.dtype = dtype
|
||||
|
||||
def repeat_expand(
|
||||
self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
|
||||
):
|
||||
ndim = content.ndim
|
||||
|
||||
if content.ndim == 1:
|
||||
content = content[None, None]
|
||||
elif content.ndim == 2:
|
||||
content = content[None]
|
||||
|
||||
assert content.ndim == 3
|
||||
|
||||
is_np = isinstance(content, np.ndarray)
|
||||
if is_np:
|
||||
content = torch.from_numpy(content)
|
||||
|
||||
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
|
||||
|
||||
if is_np:
|
||||
results = results.numpy()
|
||||
|
||||
if ndim == 1:
|
||||
return results[0, 0]
|
||||
elif ndim == 2:
|
||||
return results[0]
|
||||
|
||||
def post_process(self, x, sampling_rate, f0, pad_to):
|
||||
if isinstance(f0, np.ndarray):
|
||||
f0 = torch.from_numpy(f0).float().to(x.device)
|
||||
|
||||
if pad_to is None:
|
||||
return f0
|
||||
|
||||
f0 = self.repeat_expand(f0, pad_to)
|
||||
|
||||
vuv_vector = torch.zeros_like(f0)
|
||||
vuv_vector[f0 > 0.0] = 1.0
|
||||
vuv_vector[f0 <= 0.0] = 0.0
|
||||
|
||||
# 去掉0频率, 并线性插值
|
||||
nzindex = torch.nonzero(f0).squeeze()
|
||||
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
|
||||
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
|
||||
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
|
||||
|
||||
vuv_vector = F.interpolate(vuv_vector[None, None, :], size=pad_to)[0][0]
|
||||
|
||||
if f0.shape[0] <= 0:
|
||||
return torch.zeros(pad_to, dtype=torch.float, device=x.device).cpu().numpy(), vuv_vector.cpu().numpy()
|
||||
if f0.shape[0] == 1:
|
||||
return (torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[
|
||||
0]).cpu().numpy(), vuv_vector.cpu().numpy()
|
||||
|
||||
# 大概可以用 torch 重写?
|
||||
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
|
||||
# vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
|
||||
|
||||
return f0, vuv_vector.cpu().numpy()
|
||||
|
||||
def compute_f0(self, wav, p_len=None):
|
||||
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
||||
if p_len is None:
|
||||
p_len = x.shape[0] // self.hop_length
|
||||
else:
|
||||
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
||||
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)
|
||||
if torch.all(f0 == 0):
|
||||
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
||||
return rtn, rtn
|
||||
return self.post_process(x, self.sampling_rate, f0, p_len)[0]
|
||||
|
||||
def compute_f0_uv(self, wav, p_len=None):
|
||||
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
||||
if p_len is None:
|
||||
p_len = x.shape[0] // self.hop_length
|
||||
else:
|
||||
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
||||
f0 = self.fcpe(x, sr=self.sampling_rate, threshold=self.threshold)
|
||||
if torch.all(f0 == 0):
|
||||
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
||||
return rtn, rtn
|
||||
return self.post_process(x, self.sampling_rate, f0, p_len)
|
3
modules/F0Predictor/fcpe/__init__.py
Normal file
3
modules/F0Predictor/fcpe/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .pcmer import PCmer
|
||||
from .nvSTFT import STFT
|
||||
from .model import FCPEInfer
|
244
modules/F0Predictor/fcpe/model.py
Normal file
244
modules/F0Predictor/fcpe/model.py
Normal file
@ -0,0 +1,244 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils import weight_norm
|
||||
import os
|
||||
import yaml
|
||||
from torchaudio.transforms import Resample
|
||||
import numpy as np
|
||||
|
||||
from .pcmer import PCmer
|
||||
from .nvSTFT import STFT
|
||||
|
||||
|
||||
def l2_regularization(model, l2_alpha):
|
||||
l2_loss = []
|
||||
for module in model.modules():
|
||||
if type(module) is nn.Conv2d:
|
||||
l2_loss.append((module.weight ** 2).sum() / 2.0)
|
||||
return l2_alpha * sum(l2_loss)
|
||||
|
||||
|
||||
class FCPE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_channel=128,
|
||||
out_dims=360,
|
||||
n_layers=12,
|
||||
n_chans=512,
|
||||
use_siren=False,
|
||||
use_full=False,
|
||||
loss_mse_scale=10,
|
||||
loss_l2_regularization=False,
|
||||
loss_l2_regularization_scale=1,
|
||||
loss_grad1_mse=False,
|
||||
loss_grad1_mse_scale=1,
|
||||
f0_max=1975.5,
|
||||
f0_min=32.70,
|
||||
confidence=False,
|
||||
threshold=0.05,
|
||||
use_input_conv=True
|
||||
):
|
||||
super().__init__()
|
||||
if use_siren == True:
|
||||
raise ValueError("Siren is not supported yet.")
|
||||
if use_full == True:
|
||||
raise ValueError("Full model is not supported yet.")
|
||||
|
||||
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10
|
||||
self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False
|
||||
self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale
|
||||
is not None) else 1
|
||||
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False
|
||||
self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1
|
||||
self.f0_max = f0_max if (f0_max is not None) else 1975.5
|
||||
self.f0_min = f0_min if (f0_min is not None) else 32.70
|
||||
self.confidence = confidence if (confidence is not None) else False
|
||||
self.threshold = threshold if (threshold is not None) else 0.05
|
||||
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True
|
||||
|
||||
self.cent_table_b = torch.Tensor(
|
||||
np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0],
|
||||
out_dims))
|
||||
self.register_buffer("cent_table", self.cent_table_b)
|
||||
|
||||
# conv in stack
|
||||
_leaky = nn.LeakyReLU()
|
||||
self.stack = nn.Sequential(
|
||||
nn.Conv1d(input_channel, n_chans, 3, 1, 1),
|
||||
nn.GroupNorm(4, n_chans),
|
||||
_leaky,
|
||||
nn.Conv1d(n_chans, n_chans, 3, 1, 1))
|
||||
|
||||
# transformer
|
||||
self.decoder = PCmer(
|
||||
num_layers=n_layers,
|
||||
num_heads=8,
|
||||
dim_model=n_chans,
|
||||
dim_keys=n_chans,
|
||||
dim_values=n_chans,
|
||||
residual_dropout=0.1,
|
||||
attention_dropout=0.1)
|
||||
self.norm = nn.LayerNorm(n_chans)
|
||||
|
||||
# out
|
||||
self.n_out = out_dims
|
||||
self.dense_out = weight_norm(
|
||||
nn.Linear(n_chans, self.n_out))
|
||||
|
||||
def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False):
|
||||
"""
|
||||
input:
|
||||
B x n_frames x n_unit
|
||||
return:
|
||||
dict of B x n_frames x feat
|
||||
"""
|
||||
if self.use_input_conv:
|
||||
x = self.stack(mel.transpose(1, 2)).transpose(1, 2)
|
||||
else:
|
||||
x = mel
|
||||
x = self.decoder(x)
|
||||
x = self.norm(x)
|
||||
x = self.dense_out(x) # [B,N,D]
|
||||
x = torch.sigmoid(x)
|
||||
if not infer:
|
||||
gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1]
|
||||
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim]
|
||||
loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) # bce loss
|
||||
# l2 regularization
|
||||
if self.loss_l2_regularization:
|
||||
loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale)
|
||||
x = loss_all
|
||||
if infer:
|
||||
x = self.cents_decoder(x)
|
||||
x = self.cent_to_f0(x)
|
||||
if not return_hz_f0:
|
||||
x = (1 + x / 700).log()
|
||||
return x
|
||||
|
||||
def cents_decoder(self, y, mask=True):
|
||||
B, N, _ = y.size()
|
||||
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
||||
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) # cents: [B,N,1]
|
||||
if mask:
|
||||
confident = torch.max(y, dim=-1, keepdim=True)[0]
|
||||
confident_mask = torch.ones_like(confident)
|
||||
confident_mask[confident <= self.threshold] = float("-INF")
|
||||
rtn = rtn * confident_mask
|
||||
if self.confidence:
|
||||
return rtn, confident
|
||||
else:
|
||||
return rtn
|
||||
|
||||
def cent_to_f0(self, cent):
|
||||
return 10. * 2 ** (cent / 1200.)
|
||||
|
||||
def f0_to_cent(self, f0):
|
||||
return 1200. * torch.log2(f0 / 10.)
|
||||
|
||||
def gaussian_blurred_cent(self, cents): # cents: [B,N,1]
|
||||
mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.)))
|
||||
B, N, _ = cents.size()
|
||||
ci = self.cent_table[None, None, :].expand(B, N, -1)
|
||||
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float()
|
||||
|
||||
|
||||
class FCPEInfer:
|
||||
def __init__(self, model_path, device=None, dtype=torch.float32):
|
||||
config_file = os.path.join(os.path.split(model_path)[0], 'config.yaml')
|
||||
with open(config_file, "r") as config:
|
||||
args = yaml.safe_load(config)
|
||||
self.args = DotDict(args)
|
||||
self.dtype = dtype
|
||||
model = FCPE(
|
||||
input_channel=self.args.model.input_channel,
|
||||
out_dims=self.args.model.out_dims,
|
||||
n_layers=self.args.model.n_layers,
|
||||
n_chans=self.args.model.n_chans,
|
||||
use_siren=self.args.model.use_siren,
|
||||
use_full=self.args.model.use_full,
|
||||
loss_mse_scale=self.args.loss.loss_mse_scale,
|
||||
loss_l2_regularization=self.args.loss.loss_l2_regularization,
|
||||
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale,
|
||||
loss_grad1_mse=self.args.loss.loss_grad1_mse,
|
||||
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale,
|
||||
f0_max=self.args.model.f0_max,
|
||||
f0_min=self.args.model.f0_min,
|
||||
confidence=self.args.model.confidence,
|
||||
)
|
||||
if device is None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
self.device = device
|
||||
ckpt = torch.load(model_path, map_location=torch.device(self.device))
|
||||
model.to(self.device).to(self.dtype)
|
||||
model.load_state_dict(ckpt['model'])
|
||||
model.eval()
|
||||
self.model = model
|
||||
self.wav2mel = Wav2Mel(self.args)
|
||||
self.args = args
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, audio, sr, threshold=0.05):
|
||||
self.model.threshold = threshold
|
||||
audio = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
|
||||
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype)
|
||||
mel_f0 = self.model(mel=mel, infer=True, return_hz_f0=True)
|
||||
# f0 = (mel_f0.exp() - 1) * 700
|
||||
f0 = mel_f0
|
||||
return f0
|
||||
|
||||
|
||||
class Wav2Mel:
|
||||
def __init__(self, args, device=None):
|
||||
# self.args = args
|
||||
self.sampling_rate = args.mel.sampling_rate
|
||||
self.hop_size = args.mel.hop_size
|
||||
if device is None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
self.device = device
|
||||
self.stft = STFT(
|
||||
args.mel.sampling_rate,
|
||||
args.mel.num_mels,
|
||||
args.mel.n_fft,
|
||||
args.mel.win_size,
|
||||
args.mel.hop_size,
|
||||
args.mel.fmin,
|
||||
args.mel.fmax
|
||||
)
|
||||
self.resample_kernel = {}
|
||||
|
||||
def extract_nvstft(self, audio, keyshift=0, train=False):
|
||||
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) # B, n_frames, bins
|
||||
return mel
|
||||
|
||||
def extract_mel(self, audio, sample_rate, keyshift=0, train=False):
|
||||
# resample
|
||||
if sample_rate == self.sampling_rate:
|
||||
audio_res = audio
|
||||
else:
|
||||
key_str = str(sample_rate)
|
||||
if key_str not in self.resample_kernel:
|
||||
self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate,
|
||||
lowpass_filter_width=128).to(self.device)
|
||||
audio_res = self.resample_kernel[key_str](audio)
|
||||
|
||||
# extract
|
||||
mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) # B, n_frames, bins
|
||||
n_frames = int(audio.shape[1] // self.hop_size) + 1
|
||||
if n_frames > int(mel.shape[1]):
|
||||
mel = torch.cat((mel, mel[:, -1:, :]), 1)
|
||||
if n_frames < int(mel.shape[1]):
|
||||
mel = mel[:, :n_frames, :]
|
||||
return mel
|
||||
|
||||
def __call__(self, audio, sample_rate, keyshift=0, train=False):
|
||||
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train)
|
||||
|
||||
|
||||
class DotDict(dict):
|
||||
def __getattr__(*args):
|
||||
val = dict.get(*args)
|
||||
return DotDict(val) if type(val) is dict else val
|
||||
|
||||
__setattr__ = dict.__setitem__
|
||||
__delattr__ = dict.__delitem__
|
135
modules/F0Predictor/fcpe/nvSTFT.py
Normal file
135
modules/F0Predictor/fcpe/nvSTFT.py
Normal file
@ -0,0 +1,135 @@
|
||||
import math
|
||||
import os
|
||||
os.environ["LRU_CACHE_CAPACITY"] = "3"
|
||||
import random
|
||||
import torch
|
||||
import torch.utils.data
|
||||
import numpy as np
|
||||
import librosa
|
||||
from librosa.util import normalize
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
from scipy.io.wavfile import read
|
||||
import soundfile as sf
|
||||
import torch.nn.functional as F
|
||||
|
||||
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
|
||||
sampling_rate = None
|
||||
try:
|
||||
data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
|
||||
except Exception as ex:
|
||||
print(f"'{full_path}' failed to load.\nException:")
|
||||
print(ex)
|
||||
if return_empty_on_exception:
|
||||
return [], sampling_rate or target_sr or 48000
|
||||
else:
|
||||
raise Exception(ex)
|
||||
|
||||
if len(data.shape) > 1:
|
||||
data = data[:, 0]
|
||||
assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
|
||||
|
||||
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
|
||||
max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
|
||||
else: # if audio data is type fp32
|
||||
max_mag = max(np.amax(data), -np.amin(data))
|
||||
max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
|
||||
|
||||
data = torch.FloatTensor(data.astype(np.float32))/max_mag
|
||||
|
||||
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
|
||||
return [], sampling_rate or target_sr or 48000
|
||||
if target_sr is not None and sampling_rate != target_sr:
|
||||
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
|
||||
sampling_rate = target_sr
|
||||
|
||||
return data, sampling_rate
|
||||
|
||||
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||||
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||||
|
||||
def dynamic_range_decompression(x, C=1):
|
||||
return np.exp(x) / C
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
return torch.exp(x) / C
|
||||
|
||||
class STFT():
|
||||
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
|
||||
self.target_sr = sr
|
||||
|
||||
self.n_mels = n_mels
|
||||
self.n_fft = n_fft
|
||||
self.win_size = win_size
|
||||
self.hop_length = hop_length
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.clip_val = clip_val
|
||||
self.mel_basis = {}
|
||||
self.hann_window = {}
|
||||
|
||||
def get_mel(self, y, keyshift=0, speed=1, center=False, train=False):
|
||||
sampling_rate = self.target_sr
|
||||
n_mels = self.n_mels
|
||||
n_fft = self.n_fft
|
||||
win_size = self.win_size
|
||||
hop_length = self.hop_length
|
||||
fmin = self.fmin
|
||||
fmax = self.fmax
|
||||
clip_val = self.clip_val
|
||||
|
||||
factor = 2 ** (keyshift / 12)
|
||||
n_fft_new = int(np.round(n_fft * factor))
|
||||
win_size_new = int(np.round(win_size * factor))
|
||||
hop_length_new = int(np.round(hop_length * speed))
|
||||
if not train:
|
||||
mel_basis = self.mel_basis
|
||||
hann_window = self.hann_window
|
||||
else:
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
|
||||
mel_basis_key = str(fmax)+'_'+str(y.device)
|
||||
if mel_basis_key not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
|
||||
|
||||
keyshift_key = str(keyshift)+'_'+str(y.device)
|
||||
if keyshift_key not in hann_window:
|
||||
hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
|
||||
|
||||
pad_left = (win_size_new - hop_length_new) //2
|
||||
pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
|
||||
if pad_right < y.size(-1):
|
||||
mode = 'reflect'
|
||||
else:
|
||||
mode = 'constant'
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=hann_window[keyshift_key],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
|
||||
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + (1e-9))
|
||||
if keyshift != 0:
|
||||
size = n_fft // 2 + 1
|
||||
resize = spec.size(1)
|
||||
if resize < size:
|
||||
spec = F.pad(spec, (0, 0, 0, size-resize))
|
||||
spec = spec[:, :size, :] * win_size / win_size_new
|
||||
spec = torch.matmul(mel_basis[mel_basis_key], spec)
|
||||
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
|
||||
return spec
|
||||
|
||||
def __call__(self, audiopath):
|
||||
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
|
||||
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
|
||||
return spect
|
||||
|
||||
stft = STFT()
|
380
modules/F0Predictor/fcpe/pcmer.py
Normal file
380
modules/F0Predictor/fcpe/pcmer.py
Normal file
@ -0,0 +1,380 @@
|
||||
import torch
|
||||
|
||||
from torch import nn
|
||||
import math
|
||||
from functools import partial
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from local_attention import LocalAttention
|
||||
import torch.nn.functional as F
|
||||
#import fast_transformers.causal_product.causal_product_cuda
|
||||
|
||||
def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
|
||||
b, h, *_ = data.shape
|
||||
# (batch size, head, length, model_dim)
|
||||
|
||||
# normalize model dim
|
||||
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
|
||||
|
||||
# what is ration?, projection_matrix.shape[0] --> 266
|
||||
|
||||
ratio = (projection_matrix.shape[0] ** -0.5)
|
||||
|
||||
projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
|
||||
projection = projection.type_as(data)
|
||||
|
||||
#data_dash = w^T x
|
||||
data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
|
||||
|
||||
|
||||
# diag_data = D**2
|
||||
diag_data = data ** 2
|
||||
diag_data = torch.sum(diag_data, dim=-1)
|
||||
diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
|
||||
diag_data = diag_data.unsqueeze(dim=-1)
|
||||
|
||||
#print ()
|
||||
if is_query:
|
||||
data_dash = ratio * (
|
||||
torch.exp(data_dash - diag_data -
|
||||
torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
|
||||
else:
|
||||
data_dash = ratio * (
|
||||
torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)
|
||||
|
||||
return data_dash.type_as(data)
|
||||
|
||||
def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
|
||||
unstructured_block = torch.randn((cols, cols), device = device)
|
||||
q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
|
||||
q, r = map(lambda t: t.to(device), (q, r))
|
||||
|
||||
# proposed by @Parskatt
|
||||
# to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
|
||||
if qr_uniform_q:
|
||||
d = torch.diag(r, 0)
|
||||
q *= d.sign()
|
||||
return q.t()
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def empty(tensor):
|
||||
return tensor.numel() == 0
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
def cast_tuple(val):
|
||||
return (val,) if not isinstance(val, tuple) else val
|
||||
|
||||
class PCmer(nn.Module):
|
||||
"""The encoder that is used in the Transformer model."""
|
||||
|
||||
def __init__(self,
|
||||
num_layers,
|
||||
num_heads,
|
||||
dim_model,
|
||||
dim_keys,
|
||||
dim_values,
|
||||
residual_dropout,
|
||||
attention_dropout):
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
self.num_heads = num_heads
|
||||
self.dim_model = dim_model
|
||||
self.dim_values = dim_values
|
||||
self.dim_keys = dim_keys
|
||||
self.residual_dropout = residual_dropout
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
|
||||
|
||||
# METHODS ########################################################################################################
|
||||
|
||||
def forward(self, phone, mask=None):
|
||||
|
||||
# apply all layers to the input
|
||||
for (i, layer) in enumerate(self._layers):
|
||||
phone = layer(phone, mask)
|
||||
# provide the final sequence
|
||||
return phone
|
||||
|
||||
|
||||
# ==================================================================================================================== #
|
||||
# CLASS _ E N C O D E R L A Y E R #
|
||||
# ==================================================================================================================== #
|
||||
|
||||
|
||||
class _EncoderLayer(nn.Module):
|
||||
"""One layer of the encoder.
|
||||
|
||||
Attributes:
|
||||
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
|
||||
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
|
||||
"""
|
||||
|
||||
def __init__(self, parent: PCmer):
|
||||
"""Creates a new instance of ``_EncoderLayer``.
|
||||
|
||||
Args:
|
||||
parent (Encoder): The encoder that the layers is created for.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.conformer = ConformerConvModule(parent.dim_model)
|
||||
self.norm = nn.LayerNorm(parent.dim_model)
|
||||
self.dropout = nn.Dropout(parent.residual_dropout)
|
||||
|
||||
# selfatt -> fastatt: performer!
|
||||
self.attn = SelfAttention(dim = parent.dim_model,
|
||||
heads = parent.num_heads,
|
||||
causal = False)
|
||||
|
||||
# METHODS ########################################################################################################
|
||||
|
||||
def forward(self, phone, mask=None):
|
||||
|
||||
# compute attention sub-layer
|
||||
phone = phone + (self.attn(self.norm(phone), mask=mask))
|
||||
|
||||
phone = phone + (self.conformer(phone))
|
||||
|
||||
return phone
|
||||
|
||||
def calc_same_padding(kernel_size):
|
||||
pad = kernel_size // 2
|
||||
return (pad, pad - (kernel_size + 1) % 2)
|
||||
|
||||
# helper classes
|
||||
|
||||
class Swish(nn.Module):
|
||||
def forward(self, x):
|
||||
return x * x.sigmoid()
|
||||
|
||||
class Transpose(nn.Module):
|
||||
def __init__(self, dims):
|
||||
super().__init__()
|
||||
assert len(dims) == 2, 'dims must be a tuple of two dimensions'
|
||||
self.dims = dims
|
||||
|
||||
def forward(self, x):
|
||||
return x.transpose(*self.dims)
|
||||
|
||||
class GLU(nn.Module):
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, x):
|
||||
out, gate = x.chunk(2, dim=self.dim)
|
||||
return out * gate.sigmoid()
|
||||
|
||||
class DepthWiseConv1d(nn.Module):
|
||||
def __init__(self, chan_in, chan_out, kernel_size, padding):
|
||||
super().__init__()
|
||||
self.padding = padding
|
||||
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.pad(x, self.padding)
|
||||
return self.conv(x)
|
||||
|
||||
class ConformerConvModule(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
causal = False,
|
||||
expansion_factor = 2,
|
||||
kernel_size = 31,
|
||||
dropout = 0.):
|
||||
super().__init__()
|
||||
|
||||
inner_dim = dim * expansion_factor
|
||||
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
Transpose((1, 2)),
|
||||
nn.Conv1d(dim, inner_dim * 2, 1),
|
||||
GLU(dim=1),
|
||||
DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
|
||||
#nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
|
||||
Swish(),
|
||||
nn.Conv1d(inner_dim, dim, 1),
|
||||
Transpose((1, 2)),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
def linear_attention(q, k, v):
|
||||
if v is None:
|
||||
#print (k.size(), q.size())
|
||||
out = torch.einsum('...ed,...nd->...ne', k, q)
|
||||
return out
|
||||
|
||||
else:
|
||||
k_cumsum = k.sum(dim = -2)
|
||||
#k_cumsum = k.sum(dim = -2)
|
||||
D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)
|
||||
|
||||
context = torch.einsum('...nd,...ne->...de', k, v)
|
||||
#print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
|
||||
out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
|
||||
return out
|
||||
|
||||
def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
|
||||
nb_full_blocks = int(nb_rows / nb_columns)
|
||||
#print (nb_full_blocks)
|
||||
block_list = []
|
||||
|
||||
for _ in range(nb_full_blocks):
|
||||
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
|
||||
block_list.append(q)
|
||||
# block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
|
||||
#print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
|
||||
#print (nb_rows, nb_full_blocks, nb_columns)
|
||||
remaining_rows = nb_rows - nb_full_blocks * nb_columns
|
||||
#print (remaining_rows)
|
||||
if remaining_rows > 0:
|
||||
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
|
||||
#print (q[:remaining_rows].size())
|
||||
block_list.append(q[:remaining_rows])
|
||||
|
||||
final_matrix = torch.cat(block_list)
|
||||
|
||||
if scaling == 0:
|
||||
multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
|
||||
elif scaling == 1:
|
||||
multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
|
||||
else:
|
||||
raise ValueError(f'Invalid scaling {scaling}')
|
||||
|
||||
return torch.diag(multiplier) @ final_matrix
|
||||
|
||||
class FastAttention(nn.Module):
|
||||
def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
|
||||
super().__init__()
|
||||
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
|
||||
|
||||
self.dim_heads = dim_heads
|
||||
self.nb_features = nb_features
|
||||
self.ortho_scaling = ortho_scaling
|
||||
|
||||
self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
|
||||
projection_matrix = self.create_projection()
|
||||
self.register_buffer('projection_matrix', projection_matrix)
|
||||
|
||||
self.generalized_attention = generalized_attention
|
||||
self.kernel_fn = kernel_fn
|
||||
|
||||
# if this is turned on, no projection will be used
|
||||
# queries and keys will be softmax-ed as in the original efficient attention paper
|
||||
self.no_projection = no_projection
|
||||
|
||||
self.causal = causal
|
||||
if causal:
|
||||
try:
|
||||
import fast_transformers.causal_product.causal_product_cuda
|
||||
self.causal_linear_fn = partial(causal_linear_attention)
|
||||
except ImportError:
|
||||
print('unable to import cuda code for auto-regressive Performer. will default to the memory inefficient non-cuda version')
|
||||
self.causal_linear_fn = causal_linear_attention_noncuda
|
||||
@torch.no_grad()
|
||||
def redraw_projection_matrix(self):
|
||||
projections = self.create_projection()
|
||||
self.projection_matrix.copy_(projections)
|
||||
del projections
|
||||
|
||||
def forward(self, q, k, v):
|
||||
device = q.device
|
||||
|
||||
if self.no_projection:
|
||||
q = q.softmax(dim = -1)
|
||||
k = torch.exp(k) if self.causal else k.softmax(dim = -2)
|
||||
|
||||
elif self.generalized_attention:
|
||||
create_kernel = partial(generalized_kernel, kernel_fn = self.kernel_fn, projection_matrix = self.projection_matrix, device = device)
|
||||
q, k = map(create_kernel, (q, k))
|
||||
|
||||
else:
|
||||
create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
|
||||
|
||||
q = create_kernel(q, is_query = True)
|
||||
k = create_kernel(k, is_query = False)
|
||||
|
||||
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
|
||||
if v is None:
|
||||
out = attn_fn(q, k, None)
|
||||
return out
|
||||
else:
|
||||
out = attn_fn(q, k, v)
|
||||
return out
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
|
||||
super().__init__()
|
||||
assert dim % heads == 0, 'dimension must be divisible by number of heads'
|
||||
dim_head = default(dim_head, dim // heads)
|
||||
inner_dim = dim_head * heads
|
||||
self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)
|
||||
|
||||
self.heads = heads
|
||||
self.global_heads = heads - local_heads
|
||||
self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None
|
||||
|
||||
#print (heads, nb_features, dim_head)
|
||||
#name_embedding = torch.zeros(110, heads, dim_head, dim_head)
|
||||
#self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
|
||||
|
||||
|
||||
self.to_q = nn.Linear(dim, inner_dim)
|
||||
self.to_k = nn.Linear(dim, inner_dim)
|
||||
self.to_v = nn.Linear(dim, inner_dim)
|
||||
self.to_out = nn.Linear(inner_dim, dim)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
@torch.no_grad()
|
||||
def redraw_projection_matrix(self):
|
||||
self.fast_attention.redraw_projection_matrix()
|
||||
#torch.nn.init.zeros_(self.name_embedding)
|
||||
#print (torch.sum(self.name_embedding))
|
||||
def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
|
||||
b, n, _, h, gh = *x.shape, self.heads, self.global_heads
|
||||
|
||||
cross_attend = exists(context)
|
||||
|
||||
context = default(context, x)
|
||||
context_mask = default(context_mask, mask) if not cross_attend else context_mask
|
||||
#print (torch.sum(self.name_embedding))
|
||||
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
||||
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
|
||||
|
||||
attn_outs = []
|
||||
#print (name)
|
||||
#print (self.name_embedding[name].size())
|
||||
if not empty(q):
|
||||
if exists(context_mask):
|
||||
global_mask = context_mask[:, None, :, None]
|
||||
v.masked_fill_(~global_mask, 0.)
|
||||
if cross_attend:
|
||||
pass
|
||||
#print (torch.sum(self.name_embedding))
|
||||
#out = self.fast_attention(q,self.name_embedding[name],None)
|
||||
#print (torch.sum(self.name_embedding[...,-1:]))
|
||||
else:
|
||||
out = self.fast_attention(q, k, v)
|
||||
attn_outs.append(out)
|
||||
|
||||
if not empty(lq):
|
||||
assert not cross_attend, 'local attention is not compatible with cross attention'
|
||||
out = self.local_attn(lq, lk, lv, input_mask = mask)
|
||||
attn_outs.append(out)
|
||||
|
||||
out = torch.cat(attn_outs, dim = 1)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
out = self.to_out(out)
|
||||
return self.dropout(out)
|
3
utils.py
3
utils.py
@ -102,6 +102,9 @@ def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs):
|
||||
elif f0_predictor == "rmvpe":
|
||||
from modules.F0Predictor.RMVPEF0Predictor import RMVPEF0Predictor
|
||||
f0_predictor_object = RMVPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
|
||||
elif f0_predictor == "fcpe":
|
||||
from modules.F0Predictor.FCPEF0Predictor import FCEF0Predictor
|
||||
f0_predictor_object = FCEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
|
||||
else:
|
||||
raise Exception("Unknown f0 predictor")
|
||||
return f0_predictor_object
|
||||
|
Loading…
Reference in New Issue
Block a user