mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-01-07 03:17:31 +08:00
commit
1919391b31
15
README.md
15
README.md
@ -145,6 +145,8 @@ While the pretrained model typically does not pose copyright concerns, it is ess
|
||||
|
||||
#### **Optional(Select as Required)**
|
||||
|
||||
##### NSF-HIFIGAN
|
||||
|
||||
If you are using the `NSF-HIFIGAN enhancer` or `shallow diffusion`, you will need to download the pre-trained NSF-HIFIGAN model.
|
||||
|
||||
- Pre-trained NSF-HIFIGAN Vocoder: [nsf_hifigan_20221211.zip](https://github.com/openvpi/vocoders/releases/download/nsf-hifigan-v1/nsf_hifigan_20221211.zip)
|
||||
@ -158,6 +160,13 @@ unzip -od pretrain/nsf_hifigan pretrain/nsf_hifigan_20221211.zip
|
||||
# URL: https://github.com/openvpi/vocoders/releases/tag/nsf-hifigan-v1
|
||||
```
|
||||
|
||||
##### RMVPE
|
||||
|
||||
If you are using the `rmvpe` F0 Predictor, you will need to download the pre-trained RMVPE model.
|
||||
|
||||
- download model at [rmvpe.pt](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt)
|
||||
- Place it under the `pretrain` directory
|
||||
|
||||
## 📊 Dataset Preparation
|
||||
|
||||
Simply place the dataset in the `dataset_raw` directory with the following file structure:
|
||||
@ -278,13 +287,14 @@ nsf-snake-hifigan
|
||||
python preprocess_hubert_f0.py --f0_predictor dio
|
||||
```
|
||||
|
||||
f0_predictor has four options
|
||||
f0_predictor has the following options
|
||||
|
||||
```
|
||||
crepe
|
||||
dio
|
||||
pm
|
||||
harvest
|
||||
rmvpe
|
||||
```
|
||||
|
||||
If the training set is too noisy,it is recommended to use `crepe` to handle f0
|
||||
@ -336,7 +346,7 @@ Required parameters:
|
||||
|
||||
Optional parameters: see the next section
|
||||
- `-lg` | `--linear_gradient`: The cross fade length of two audio slices in seconds. If there is a discontinuous voice after forced slicing, you can adjust this value. Otherwise, it is recommended to use the default value of 0.
|
||||
- `-f0p` | `--f0_predictor`: Select a F0 predictor, options are `crepe`, `pm`, `dio`, `harvest`, default value is `pm`(note: f0 mean pooling will be enable when using `crepe`)
|
||||
- `-f0p` | `--f0_predictor`: Select a F0 predictor, options are `crepe`, `pm`, `dio`, `harvest`, `rmvpe`, default value is `pm`(note: f0 mean pooling will be enable when using `crepe`)
|
||||
- `-a` | `--auto_predict_f0`: automatic pitch prediction, do not enable this when converting singing voices as it can cause serious pitch issues.
|
||||
- `-cm` | `--cluster_model_path`: Cluster model or feature retrieval index path, if left blank, it will be automatically set as the default path of these models. If there is no training cluster or feature retrieval, fill in at will.
|
||||
- `-cr` | `--cluster_infer_ratio`: The proportion of clustering scheme or feature retrieval ranges from 0 to 1. If there is no training clustering model or feature retrieval, the default is 0.
|
||||
@ -474,6 +484,7 @@ Note: For Hubert Onnx models, please use the models provided by MoeSS. Currently
|
||||
|[aes35-000039](https://www.aes.org/e-lib/online/browse.cfm?elib=15165) | Dio (F0 Predictor) | Fast and reliable F0 estimation method based on the period extraction of vocal fold vibration of singing voice and speech | [mmorise/World/dio](https://github.com/mmorise/World/blob/master/src/dio.cpp) |
|
||||
|[8461329](https://ieeexplore.ieee.org/document/8461329) | Crepe (F0 Predictor) | Crepe: A Convolutional Representation for Pitch Estimation | [maxrmorrison/torchcrepe](https://github.com/maxrmorrison/torchcrepe) |
|
||||
|[DOI:10.1016/j.wocn.2018.07.001](https://doi.org/10.1016/j.wocn.2018.07.001) | Parselmouth (F0 Predictor) | Introducing Parselmouth: A Python interface to Praat | [YannickJadoul/Parselmouth](https://github.com/YannickJadoul/Parselmouth) |
|
||||
|[2306.15412v2](https://arxiv.org/abs/2306.15412v2) | RMVPE (F0 Predictor) | RMVPE: A Robust Model for Vocal Pitch Estimation in Polyphonic Music | [Dream-High/RMVPE](https://github.com/Dream-High/RMVPE) |
|
||||
|[2010.05646](https://arxiv.org/abs/2010.05646) | HIFIGAN (Vocoder) | HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis | [jik876/hifi-gan](https://github.com/jik876/hifi-gan) |
|
||||
|[1810.11946](https://arxiv.org/abs/1810.11946.pdf) | NSF (Vocoder) | Neural source-filter-based waveform model for statistical parametric speech synthesis | [openvpi/DiffSinger/modules/nsf_hifigan](https://github.com/openvpi/DiffSinger/tree/refactor/modules/nsf_hifigan)
|
||||
|[2006.08195](https://arxiv.org/abs/2006.08195) | Snake (Vocoder) | Neural Networks Fail to Learn Periodic Functions and How to Fix It | [EdwardDixon/snake](https://github.com/EdwardDixon/snake)
|
||||
|
@ -145,6 +145,8 @@ wget -P pretrain/ https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/mai
|
||||
|
||||
#### **可选项(根据情况选择)**
|
||||
|
||||
##### NSF-HIFIGAN
|
||||
|
||||
如果使用`NSF-HIFIGAN 增强器`或`浅层扩散`的话,需要下载预训练的 NSF-HIFIGAN 模型,如果不需要可以不下载
|
||||
|
||||
+ 预训练的 NSF-HIFIGAN 声码器 :[nsf_hifigan_20221211.zip](https://github.com/openvpi/vocoders/releases/download/nsf-hifigan-v1/nsf_hifigan_20221211.zip)
|
||||
@ -158,6 +160,14 @@ unzip -od pretrain/nsf_hifigan pretrain/nsf_hifigan_20221211.zip
|
||||
# 地址:https://github.com/openvpi/vocoders/releases/tag/nsf-hifigan-v1
|
||||
```
|
||||
|
||||
##### RMVPE
|
||||
|
||||
如果使用`rmvpe`F0预测器的话,需要下载预训练的 RMVPE 模型
|
||||
|
||||
+ 下载模型 [rmvpe.pt](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt)
|
||||
+ 放在`pretrain`目录下
|
||||
|
||||
|
||||
## 📊 数据集准备
|
||||
|
||||
仅需要以以下文件结构将数据集放入 dataset_raw 目录即可
|
||||
@ -280,13 +290,14 @@ nsf-snake-hifigan
|
||||
python preprocess_hubert_f0.py --f0_predictor dio
|
||||
```
|
||||
|
||||
f0_predictor 拥有四个选择
|
||||
f0_predictor 拥有以下选择
|
||||
|
||||
```
|
||||
crepe
|
||||
dio
|
||||
pm
|
||||
harvest
|
||||
rmvpe
|
||||
```
|
||||
|
||||
如果训练集过于嘈杂,请使用 crepe 处理 f0
|
||||
@ -338,7 +349,7 @@ python inference_main.py -m "logs/44k/G_30400.pth" -c "configs/config.json" -n "
|
||||
|
||||
可选项部分:部分具体见下一节
|
||||
+ `-lg` | `--linear_gradient`:两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值 0,单位为秒
|
||||
+ `-f0p` | `--f0_predictor`:选择 F0 预测器,可选择 crepe,pm,dio,harvest, 默认为 pm(注意:crepe 为原 F0 使用均值滤波器)
|
||||
+ `-f0p` | `--f0_predictor`:选择 F0 预测器,可选择 crepe,pm,dio,harvest,rmvpe, 默认为 pm(注意:crepe 为原 F0 使用均值滤波器)
|
||||
+ `-a` | `--auto_predict_f0`:语音转换自动预测音高,转换歌声时不要打开这个会严重跑调
|
||||
+ `-cm` | `--cluster_model_path`:聚类模型或特征检索索引路径,留空则自动设为各方案模型的默认路径,如果没有训练聚类或特征检索则随便填
|
||||
+ `-cr` | `--cluster_infer_ratio`:聚类方案或特征检索占比,范围 0-1,若没有训练聚类模型或特征检索则默认 0 即可
|
||||
@ -474,6 +485,7 @@ python compress_model.py -c="configs/config.json" -i="logs/44k/G_30400.pth" -o="
|
||||
|[aes35-000039](https://www.aes.org/e-lib/online/browse.cfm?elib=15165) | Dio (F0 Predictor) | Fast and reliable F0 estimation method based on the period extraction of vocal fold vibration of singing voice and speech | [mmorise/World/dio](https://github.com/mmorise/World/blob/master/src/dio.cpp) |
|
||||
|[8461329](https://ieeexplore.ieee.org/document/8461329) | Crepe (F0 Predictor) | Crepe: A Convolutional Representation for Pitch Estimation | [maxrmorrison/torchcrepe](https://github.com/maxrmorrison/torchcrepe) |
|
||||
|[DOI:10.1016/j.wocn.2018.07.001](https://doi.org/10.1016/j.wocn.2018.07.001) | Parselmouth (F0 Predictor) | Introducing Parselmouth: A Python interface to Praat | [YannickJadoul/Parselmouth](https://github.com/YannickJadoul/Parselmouth) |
|
||||
|[2306.15412v2](https://arxiv.org/abs/2306.15412v2) | RMVPE (F0 Predictor) | RMVPE: A Robust Model for Vocal Pitch Estimation in Polyphonic Music | [Dream-High/RMVPE](https://github.com/Dream-High/RMVPE) |
|
||||
|[2010.05646](https://arxiv.org/abs/2010.05646) | HIFIGAN (Vocoder) | HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis | [jik876/hifi-gan](https://github.com/jik876/hifi-gan) |
|
||||
|[1810.11946](https://arxiv.org/abs/1810.11946.pdf) | NSF (Vocoder) | Neural source-filter-based waveform model for statistical parametric speech synthesis | [openvpi/DiffSinger/modules/nsf_hifigan](https://github.com/openvpi/DiffSinger/tree/refactor/modules/nsf_hifigan)
|
||||
|[2006.08195](https://arxiv.org/abs/2006.08195) | Snake (Vocoder) | Neural Networks Fail to Learn Periodic Functions and How to Fix It | [EdwardDixon/snake](https://github.com/EdwardDixon/snake)
|
||||
|
@ -34,6 +34,7 @@ def removeOptimizer(config: str, input_model: str, ishalf: bool, output_model: s
|
||||
new_dict_g = copyStateDict(state_dict_g)
|
||||
keys = []
|
||||
for k, v in new_dict_g['model'].items():
|
||||
if "enc_q" in k: continue # noqa: E701
|
||||
keys.append(k)
|
||||
|
||||
new_dict_g = {k: new_dict_g['model'][k].half() for k in keys} if ishalf else {k: new_dict_g['model'][k] for k in keys}
|
||||
|
@ -29,7 +29,7 @@ def main():
|
||||
parser.add_argument('-cm', '--cluster_model_path', type=str, default="", help='聚类模型或特征检索索引路径,留空则自动设为各方案模型的默认路径,如果没有训练聚类或特征检索则随便填')
|
||||
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案或特征检索占比,范围0-1,若没有训练聚类模型或特征检索则默认0即可')
|
||||
parser.add_argument('-lg', '--linear_gradient', type=float, default=0, help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
|
||||
parser.add_argument('-f0p', '--f0_predictor', type=str, default="pm", help='选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)')
|
||||
parser.add_argument('-f0p', '--f0_predictor', type=str, default="pm", help='选择F0预测器,可选择crepe,pm,dio,harvest,rmvpe,默认为pm(注意:crepe为原F0使用均值滤波器)')
|
||||
parser.add_argument('-eh', '--enhance', action='store_true', default=False, help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭')
|
||||
parser.add_argument('-shd', '--shallow_diffusion', action='store_true', default=False, help='是否使用浅层扩散,使用后可解决一部分电音问题,默认关闭,该选项打开时,NSF_HIFIGAN增强器将会被禁止')
|
||||
parser.add_argument('-usm', '--use_spk_mix', action='store_true', default=False, help='是否使用角色融合')
|
||||
|
106
modules/F0Predictor/RMVPEF0Predictor.py
Normal file
106
modules/F0Predictor/RMVPEF0Predictor.py
Normal file
@ -0,0 +1,106 @@
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modules.F0Predictor.F0Predictor import F0Predictor
|
||||
|
||||
from .rmvpe import RMVPE
|
||||
|
||||
|
||||
class RMVPEF0Predictor(F0Predictor):
|
||||
def __init__(self,hop_length=512,f0_min=50,f0_max=1100, dtype=torch.float32, device=None,sampling_rate=44100,threshold=0.05):
|
||||
self.rmvpe = RMVPE(model_path="pretrain/rmvpe.pt",dtype=dtype,device=device)
|
||||
self.hop_length = hop_length
|
||||
self.f0_min = f0_min
|
||||
self.f0_max = f0_max
|
||||
if device is None:
|
||||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
else:
|
||||
self.device = device
|
||||
self.threshold = threshold
|
||||
self.sampling_rate = sampling_rate
|
||||
self.dtype = dtype
|
||||
|
||||
def repeat_expand(
|
||||
self, content: Union[torch.Tensor, np.ndarray], target_len: int, mode: str = "nearest"
|
||||
):
|
||||
ndim = content.ndim
|
||||
|
||||
if content.ndim == 1:
|
||||
content = content[None, None]
|
||||
elif content.ndim == 2:
|
||||
content = content[None]
|
||||
|
||||
assert content.ndim == 3
|
||||
|
||||
is_np = isinstance(content, np.ndarray)
|
||||
if is_np:
|
||||
content = torch.from_numpy(content)
|
||||
|
||||
results = torch.nn.functional.interpolate(content, size=target_len, mode=mode)
|
||||
|
||||
if is_np:
|
||||
results = results.numpy()
|
||||
|
||||
if ndim == 1:
|
||||
return results[0, 0]
|
||||
elif ndim == 2:
|
||||
return results[0]
|
||||
|
||||
def post_process(self, x, sampling_rate, f0, pad_to):
|
||||
if isinstance(f0, np.ndarray):
|
||||
f0 = torch.from_numpy(f0).float().to(x.device)
|
||||
|
||||
if pad_to is None:
|
||||
return f0
|
||||
|
||||
f0 = self.repeat_expand(f0, pad_to)
|
||||
|
||||
vuv_vector = torch.zeros_like(f0)
|
||||
vuv_vector[f0 > 0.0] = 1.0
|
||||
vuv_vector[f0 <= 0.0] = 0.0
|
||||
|
||||
# 去掉0频率, 并线性插值
|
||||
nzindex = torch.nonzero(f0).squeeze()
|
||||
f0 = torch.index_select(f0, dim=0, index=nzindex).cpu().numpy()
|
||||
time_org = self.hop_length / sampling_rate * nzindex.cpu().numpy()
|
||||
time_frame = np.arange(pad_to) * self.hop_length / sampling_rate
|
||||
|
||||
vuv_vector = F.interpolate(vuv_vector[None,None,:],size=pad_to)[0][0]
|
||||
|
||||
if f0.shape[0] <= 0:
|
||||
return torch.zeros(pad_to, dtype=torch.float, device=x.device),vuv_vector.cpu().numpy()
|
||||
if f0.shape[0] == 1:
|
||||
return torch.ones(pad_to, dtype=torch.float, device=x.device) * f0[0],vuv_vector.cpu().numpy()
|
||||
|
||||
# 大概可以用 torch 重写?
|
||||
f0 = np.interp(time_frame, time_org, f0, left=f0[0], right=f0[-1])
|
||||
#vuv_vector = np.ceil(scipy.ndimage.zoom(vuv_vector,pad_to/len(vuv_vector),order = 0))
|
||||
|
||||
return f0,vuv_vector.cpu().numpy()
|
||||
|
||||
def compute_f0(self,wav,p_len=None):
|
||||
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
||||
if p_len is None:
|
||||
p_len = x.shape[0]//self.hop_length
|
||||
else:
|
||||
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
||||
f0 = self.rmvpe.infer_from_audio(x,self.sampling_rate,self.threshold)
|
||||
if torch.all(f0 == 0):
|
||||
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
||||
return rtn,rtn
|
||||
return self.post_process(x,self.sampling_rate,f0,p_len)[0]
|
||||
|
||||
def compute_f0_uv(self,wav,p_len=None):
|
||||
x = torch.FloatTensor(wav).to(self.dtype).to(self.device)
|
||||
if p_len is None:
|
||||
p_len = x.shape[0]//self.hop_length
|
||||
else:
|
||||
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
||||
f0 = self.rmvpe.infer_from_audio(x,self.sampling_rate,self.threshold)
|
||||
if torch.all(f0 == 0):
|
||||
rtn = f0.cpu().numpy() if p_len is None else np.zeros(p_len)
|
||||
return rtn,rtn
|
||||
return self.post_process(x,self.sampling_rate,f0,p_len)
|
10
modules/F0Predictor/rmvpe/__init__.py
Normal file
10
modules/F0Predictor/rmvpe/__init__.py
Normal file
@ -0,0 +1,10 @@
|
||||
from .constants import * # noqa: F403
|
||||
from .inference import RMVPE # noqa: F401
|
||||
from .model import E2E, E2E0 # noqa: F401
|
||||
from .spec import MelSpectrogram # noqa: F401
|
||||
from .utils import ( # noqa: F401
|
||||
cycle,
|
||||
summary,
|
||||
to_local_average_cents,
|
||||
to_viterbi_cents,
|
||||
)
|
9
modules/F0Predictor/rmvpe/constants.py
Normal file
9
modules/F0Predictor/rmvpe/constants.py
Normal file
@ -0,0 +1,9 @@
|
||||
SAMPLE_RATE = 16000
|
||||
|
||||
N_CLASS = 360
|
||||
|
||||
N_MELS = 128
|
||||
MEL_FMIN = 30
|
||||
MEL_FMAX = SAMPLE_RATE // 2
|
||||
WINDOW_LENGTH = 1024
|
||||
CONST = 1997.3794084376191
|
190
modules/F0Predictor/rmvpe/deepunet.py
Normal file
190
modules/F0Predictor/rmvpe/deepunet.py
Normal file
@ -0,0 +1,190 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from .constants import N_MELS
|
||||
|
||||
|
||||
class ConvBlockRes(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, momentum=0.01):
|
||||
super(ConvBlockRes, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
bias=False),
|
||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||
nn.ReLU(),
|
||||
|
||||
nn.Conv2d(in_channels=out_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=(3, 3),
|
||||
stride=(1, 1),
|
||||
padding=(1, 1),
|
||||
bias=False),
|
||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||
nn.ReLU(),
|
||||
)
|
||||
if in_channels != out_channels:
|
||||
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
||||
self.is_shortcut = True
|
||||
else:
|
||||
self.is_shortcut = False
|
||||
|
||||
def forward(self, x):
|
||||
if self.is_shortcut:
|
||||
return self.conv(x) + self.shortcut(x)
|
||||
else:
|
||||
return self.conv(x) + x
|
||||
|
||||
|
||||
class ResEncoderBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01):
|
||||
super(ResEncoderBlock, self).__init__()
|
||||
self.n_blocks = n_blocks
|
||||
self.conv = nn.ModuleList()
|
||||
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
||||
for i in range(n_blocks - 1):
|
||||
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
||||
self.kernel_size = kernel_size
|
||||
if self.kernel_size is not None:
|
||||
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
||||
|
||||
def forward(self, x):
|
||||
for i in range(self.n_blocks):
|
||||
x = self.conv[i](x)
|
||||
if self.kernel_size is not None:
|
||||
return x, self.pool(x)
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class ResDecoderBlock(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
||||
super(ResDecoderBlock, self).__init__()
|
||||
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
||||
self.n_blocks = n_blocks
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.ConvTranspose2d(in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=(3, 3),
|
||||
stride=stride,
|
||||
padding=(1, 1),
|
||||
output_padding=out_padding,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(out_channels, momentum=momentum),
|
||||
nn.ReLU(),
|
||||
)
|
||||
self.conv2 = nn.ModuleList()
|
||||
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
||||
for i in range(n_blocks-1):
|
||||
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
||||
|
||||
def forward(self, x, concat_tensor):
|
||||
x = self.conv1(x)
|
||||
x = torch.cat((x, concat_tensor), dim=1)
|
||||
for i in range(self.n_blocks):
|
||||
x = self.conv2[i](x)
|
||||
return x
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01):
|
||||
super(Encoder, self).__init__()
|
||||
self.n_encoders = n_encoders
|
||||
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
||||
self.layers = nn.ModuleList()
|
||||
self.latent_channels = []
|
||||
for i in range(self.n_encoders):
|
||||
self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum))
|
||||
self.latent_channels.append([out_channels, in_size])
|
||||
in_channels = out_channels
|
||||
out_channels *= 2
|
||||
in_size //= 2
|
||||
self.out_size = in_size
|
||||
self.out_channel = out_channels
|
||||
|
||||
def forward(self, x):
|
||||
concat_tensors = []
|
||||
x = self.bn(x)
|
||||
for i in range(self.n_encoders):
|
||||
_, x = self.layers[i](x)
|
||||
concat_tensors.append(_)
|
||||
return x, concat_tensors
|
||||
|
||||
|
||||
class Intermediate(nn.Module):
|
||||
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
||||
super(Intermediate, self).__init__()
|
||||
self.n_inters = n_inters
|
||||
self.layers = nn.ModuleList()
|
||||
self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum))
|
||||
for i in range(self.n_inters-1):
|
||||
self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum))
|
||||
|
||||
def forward(self, x):
|
||||
for i in range(self.n_inters):
|
||||
x = self.layers[i](x)
|
||||
return x
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
||||
super(Decoder, self).__init__()
|
||||
self.layers = nn.ModuleList()
|
||||
self.n_decoders = n_decoders
|
||||
for i in range(self.n_decoders):
|
||||
out_channels = in_channels // 2
|
||||
self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum))
|
||||
in_channels = out_channels
|
||||
|
||||
def forward(self, x, concat_tensors):
|
||||
for i in range(self.n_decoders):
|
||||
x = self.layers[i](x, concat_tensors[-1-i])
|
||||
return x
|
||||
|
||||
|
||||
class TimbreFilter(nn.Module):
|
||||
def __init__(self, latent_rep_channels):
|
||||
super(TimbreFilter, self).__init__()
|
||||
self.layers = nn.ModuleList()
|
||||
for latent_rep in latent_rep_channels:
|
||||
self.layers.append(ConvBlockRes(latent_rep[0], latent_rep[0]))
|
||||
|
||||
def forward(self, x_tensors):
|
||||
out_tensors = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
out_tensors.append(layer(x_tensors[i]))
|
||||
return out_tensors
|
||||
|
||||
|
||||
class DeepUnet(nn.Module):
|
||||
def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
|
||||
super(DeepUnet, self).__init__()
|
||||
self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels)
|
||||
self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
|
||||
self.tf = TimbreFilter(self.encoder.latent_channels)
|
||||
self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
|
||||
|
||||
def forward(self, x):
|
||||
x, concat_tensors = self.encoder(x)
|
||||
x = self.intermediate(x)
|
||||
concat_tensors = self.tf(concat_tensors)
|
||||
x = self.decoder(x, concat_tensors)
|
||||
return x
|
||||
|
||||
|
||||
class DeepUnet0(nn.Module):
|
||||
def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
|
||||
super(DeepUnet0, self).__init__()
|
||||
self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels)
|
||||
self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
|
||||
self.tf = TimbreFilter(self.encoder.latent_channels)
|
||||
self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)
|
||||
|
||||
def forward(self, x):
|
||||
x, concat_tensors = self.encoder(x)
|
||||
x = self.intermediate(x)
|
||||
x = self.decoder(x, concat_tensors)
|
||||
return x
|
57
modules/F0Predictor/rmvpe/inference.py
Normal file
57
modules/F0Predictor/rmvpe/inference.py
Normal file
@ -0,0 +1,57 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torchaudio.transforms import Resample
|
||||
|
||||
from .constants import * # noqa: F403
|
||||
from .model import E2E0
|
||||
from .spec import MelSpectrogram
|
||||
from .utils import to_local_average_cents, to_viterbi_cents
|
||||
|
||||
|
||||
class RMVPE:
|
||||
def __init__(self, model_path, device=None, dtype = torch.float32, hop_length=160):
|
||||
self.resample_kernel = {}
|
||||
if device is None:
|
||||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
else:
|
||||
self.device = device
|
||||
model = E2E0(4, 1, (2, 2))
|
||||
ckpt = torch.load(model_path)
|
||||
model.load_state_dict(ckpt['model'])
|
||||
model = model.to(dtype).to(self.device)
|
||||
model.eval()
|
||||
self.model = model
|
||||
self.dtype = dtype
|
||||
self.mel_extractor = MelSpectrogram(N_MELS, SAMPLE_RATE, WINDOW_LENGTH, hop_length, None, MEL_FMIN, MEL_FMAX) # noqa: F405
|
||||
self.resample_kernel = {}
|
||||
|
||||
def mel2hidden(self, mel):
|
||||
with torch.no_grad():
|
||||
n_frames = mel.shape[-1]
|
||||
mel = F.pad(mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode='reflect')
|
||||
hidden = self.model(mel)
|
||||
return hidden[:, :n_frames]
|
||||
|
||||
def decode(self, hidden, thred=0.03, use_viterbi=False):
|
||||
if use_viterbi:
|
||||
cents_pred = to_viterbi_cents(hidden, thred=thred)
|
||||
else:
|
||||
cents_pred = to_local_average_cents(hidden, thred=thred)
|
||||
f0 = torch.Tensor([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred]).to(self.device)
|
||||
return f0
|
||||
|
||||
def infer_from_audio(self, audio, sample_rate=16000, thred=0.05, use_viterbi=False):
|
||||
audio = audio.unsqueeze(0).to(self.dtype).to(self.device)
|
||||
if sample_rate == 16000:
|
||||
audio_res = audio
|
||||
else:
|
||||
key_str = str(sample_rate)
|
||||
if key_str not in self.resample_kernel:
|
||||
self.resample_kernel[key_str] = Resample(sample_rate, 16000, lowpass_filter_width=128)
|
||||
self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device)
|
||||
audio_res = self.resample_kernel[key_str](audio)
|
||||
mel_extractor = self.mel_extractor.to(self.device)
|
||||
mel = mel_extractor(audio_res, center=True).to(self.dtype)
|
||||
hidden = self.mel2hidden(mel)
|
||||
f0 = self.decode(hidden.squeeze(0), thred=thred, use_viterbi=use_viterbi)
|
||||
return f0
|
67
modules/F0Predictor/rmvpe/model.py
Normal file
67
modules/F0Predictor/rmvpe/model.py
Normal file
@ -0,0 +1,67 @@
|
||||
from torch import nn
|
||||
|
||||
from .constants import * # noqa: F403
|
||||
from .deepunet import DeepUnet, DeepUnet0
|
||||
from .seq import BiGRU
|
||||
from .spec import MelSpectrogram
|
||||
|
||||
|
||||
class E2E(nn.Module):
|
||||
def __init__(self, hop_length, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1,
|
||||
en_out_channels=16):
|
||||
super(E2E, self).__init__()
|
||||
self.mel = MelSpectrogram(N_MELS, SAMPLE_RATE, WINDOW_LENGTH, hop_length, None, MEL_FMIN, MEL_FMAX) # noqa: F405
|
||||
self.unet = DeepUnet(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
|
||||
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
||||
if n_gru:
|
||||
self.fc = nn.Sequential(
|
||||
BiGRU(3 * N_MELS, 256, n_gru), # noqa: F405
|
||||
nn.Linear(512, N_CLASS), # noqa: F405
|
||||
nn.Dropout(0.25),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
else:
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(3 * N_MELS, N_CLASS), # noqa: F405
|
||||
nn.Dropout(0.25),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
mel = self.mel(x.reshape(-1, x.shape[-1])).transpose(-1, -2).unsqueeze(1)
|
||||
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
||||
# x = self.fc(x)
|
||||
hidden_vec = 0
|
||||
if len(self.fc) == 4:
|
||||
for i in range(len(self.fc)):
|
||||
x = self.fc[i](x)
|
||||
if i == 0:
|
||||
hidden_vec = x
|
||||
return hidden_vec, x
|
||||
|
||||
|
||||
class E2E0(nn.Module):
|
||||
def __init__(self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1,
|
||||
en_out_channels=16):
|
||||
super(E2E0, self).__init__()
|
||||
self.unet = DeepUnet0(kernel_size, n_blocks, en_de_layers, inter_layers, in_channels, en_out_channels)
|
||||
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
||||
if n_gru:
|
||||
self.fc = nn.Sequential(
|
||||
BiGRU(3 * N_MELS, 256, n_gru), # noqa: F405
|
||||
nn.Linear(512, N_CLASS), # noqa: F405
|
||||
nn.Dropout(0.25),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
else:
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(3 * N_MELS, N_CLASS), # noqa: F405
|
||||
nn.Dropout(0.25),
|
||||
nn.Sigmoid()
|
||||
)
|
||||
|
||||
def forward(self, mel):
|
||||
mel = mel.transpose(-1, -2).unsqueeze(1)
|
||||
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
||||
x = self.fc(x)
|
||||
return x
|
20
modules/F0Predictor/rmvpe/seq.py
Normal file
20
modules/F0Predictor/rmvpe/seq.py
Normal file
@ -0,0 +1,20 @@
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class BiGRU(nn.Module):
|
||||
def __init__(self, input_features, hidden_features, num_layers):
|
||||
super(BiGRU, self).__init__()
|
||||
self.gru = nn.GRU(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
|
||||
|
||||
def forward(self, x):
|
||||
return self.gru(x)[0]
|
||||
|
||||
|
||||
class BiLSTM(nn.Module):
|
||||
def __init__(self, input_features, hidden_features, num_layers):
|
||||
super(BiLSTM, self).__init__()
|
||||
self.lstm = nn.LSTM(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True)
|
||||
|
||||
def forward(self, x):
|
||||
return self.lstm(x)[0]
|
||||
|
67
modules/F0Predictor/rmvpe/spec.py
Normal file
67
modules/F0Predictor/rmvpe/spec.py
Normal file
@ -0,0 +1,67 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from librosa.filters import mel
|
||||
|
||||
|
||||
class MelSpectrogram(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_mel_channels,
|
||||
sampling_rate,
|
||||
win_length,
|
||||
hop_length,
|
||||
n_fft=None,
|
||||
mel_fmin=0,
|
||||
mel_fmax=None,
|
||||
clamp = 1e-5
|
||||
):
|
||||
super().__init__()
|
||||
n_fft = win_length if n_fft is None else n_fft
|
||||
self.hann_window = {}
|
||||
mel_basis = mel(
|
||||
sr=sampling_rate,
|
||||
n_fft=n_fft,
|
||||
n_mels=n_mel_channels,
|
||||
fmin=mel_fmin,
|
||||
fmax=mel_fmax,
|
||||
htk=True)
|
||||
mel_basis = torch.from_numpy(mel_basis).float()
|
||||
self.register_buffer("mel_basis", mel_basis)
|
||||
self.n_fft = win_length if n_fft is None else n_fft
|
||||
self.hop_length = hop_length
|
||||
self.win_length = win_length
|
||||
self.sampling_rate = sampling_rate
|
||||
self.n_mel_channels = n_mel_channels
|
||||
self.clamp = clamp
|
||||
|
||||
def forward(self, audio, keyshift=0, speed=1, center=True):
|
||||
factor = 2 ** (keyshift / 12)
|
||||
n_fft_new = int(np.round(self.n_fft * factor))
|
||||
win_length_new = int(np.round(self.win_length * factor))
|
||||
hop_length_new = int(np.round(self.hop_length * speed))
|
||||
|
||||
keyshift_key = str(keyshift)+'_'+str(audio.device)
|
||||
if keyshift_key not in self.hann_window:
|
||||
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(audio.device)
|
||||
|
||||
fft = torch.stft(
|
||||
audio,
|
||||
n_fft=n_fft_new,
|
||||
hop_length=hop_length_new,
|
||||
win_length=win_length_new,
|
||||
window=self.hann_window[keyshift_key],
|
||||
center=center,
|
||||
return_complex=True)
|
||||
magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
||||
|
||||
if keyshift != 0:
|
||||
size = self.n_fft // 2 + 1
|
||||
resize = magnitude.size(1)
|
||||
if resize < size:
|
||||
magnitude = F.pad(magnitude, (0, 0, 0, size-resize))
|
||||
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
||||
|
||||
mel_output = torch.matmul(self.mel_basis, magnitude)
|
||||
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
||||
return log_mel_spec
|
107
modules/F0Predictor/rmvpe/utils.py
Normal file
107
modules/F0Predictor/rmvpe/utils.py
Normal file
@ -0,0 +1,107 @@
|
||||
import sys
|
||||
from functools import reduce
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn.modules.module import _addindent
|
||||
|
||||
from .constants import * # noqa: F403
|
||||
|
||||
|
||||
def cycle(iterable):
|
||||
while True:
|
||||
for item in iterable:
|
||||
yield item
|
||||
|
||||
|
||||
def summary(model, file=sys.stdout):
|
||||
def repr(model):
|
||||
# We treat the extra repr like the sub-module, one item per line
|
||||
extra_lines = []
|
||||
extra_repr = model.extra_repr()
|
||||
# empty string will be split into list ['']
|
||||
if extra_repr:
|
||||
extra_lines = extra_repr.split('\n')
|
||||
child_lines = []
|
||||
total_params = 0
|
||||
for key, module in model._modules.items():
|
||||
mod_str, num_params = repr(module)
|
||||
mod_str = _addindent(mod_str, 2)
|
||||
child_lines.append('(' + key + '): ' + mod_str)
|
||||
total_params += num_params
|
||||
lines = extra_lines + child_lines
|
||||
|
||||
for name, p in model._parameters.items():
|
||||
if hasattr(p, 'shape'):
|
||||
total_params += reduce(lambda x, y: x * y, p.shape)
|
||||
|
||||
main_str = model._get_name() + '('
|
||||
if lines:
|
||||
# simple one-liner info, which most builtin Modules will use
|
||||
if len(extra_lines) == 1 and not child_lines:
|
||||
main_str += extra_lines[0]
|
||||
else:
|
||||
main_str += '\n ' + '\n '.join(lines) + '\n'
|
||||
|
||||
main_str += ')'
|
||||
if file is sys.stdout:
|
||||
main_str += ', \033[92m{:,}\033[0m params'.format(total_params)
|
||||
else:
|
||||
main_str += ', {:,} params'.format(total_params)
|
||||
return main_str, total_params
|
||||
|
||||
string, count = repr(model)
|
||||
if file is not None:
|
||||
if isinstance(file, str):
|
||||
file = open(file, 'w')
|
||||
print(string, file=file)
|
||||
file.flush()
|
||||
|
||||
return count
|
||||
|
||||
|
||||
def to_local_average_cents(salience, center=None, thred=0.05):
|
||||
"""
|
||||
find the weighted average cents near the argmax bin
|
||||
"""
|
||||
|
||||
if not hasattr(to_local_average_cents, 'cents_mapping'):
|
||||
# the bin number-to-cents mapping
|
||||
to_local_average_cents.cents_mapping = (
|
||||
20 * torch.arange(N_CLASS) + CONST).to(salience.device) # noqa: F405
|
||||
|
||||
if salience.ndim == 1:
|
||||
if center is None:
|
||||
center = int(torch.argmax(salience))
|
||||
start = max(0, center - 4)
|
||||
end = min(len(salience), center + 5)
|
||||
salience = salience[start:end]
|
||||
product_sum = torch.sum(
|
||||
salience * to_local_average_cents.cents_mapping[start:end])
|
||||
weight_sum = torch.sum(salience)
|
||||
return product_sum / weight_sum if torch.max(salience) > thred else 0
|
||||
if salience.ndim == 2:
|
||||
return torch.Tensor([to_local_average_cents(salience[i, :], None, thred) for i in
|
||||
range(salience.shape[0])]).to(salience.device)
|
||||
|
||||
raise Exception("label should be either 1d or 2d ndarray")
|
||||
|
||||
def to_viterbi_cents(salience, thred=0.05):
|
||||
# Create viterbi transition matrix
|
||||
if not hasattr(to_viterbi_cents, 'transition'):
|
||||
xx, yy = torch.meshgrid(range(N_CLASS), range(N_CLASS)) # noqa: F405
|
||||
transition = torch.maximum(30 - abs(xx - yy), 0)
|
||||
transition = transition / transition.sum(axis=1, keepdims=True)
|
||||
to_viterbi_cents.transition = transition
|
||||
|
||||
# Convert to probability
|
||||
prob = salience.T
|
||||
prob = prob / prob.sum(axis=0)
|
||||
|
||||
# Perform viterbi decoding
|
||||
path = librosa.sequence.viterbi(prob.detach().cpu().numpy(), to_viterbi_cents.transition).astype(np.int64)
|
||||
|
||||
return torch.Tensor([to_local_average_cents(salience[i, :], path[i], thred) for i in
|
||||
range(len(path))]).to(salience.device)
|
||||
|
@ -134,7 +134,7 @@ if __name__ == "__main__":
|
||||
'--use_diff',action='store_true', help='Whether to use the diffusion model'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--f0_predictor', type=str, default="dio", help='Select F0 predictor, can select crepe,pm,dio,harvest, default pm(note: crepe is original F0 using mean filter)'
|
||||
'--f0_predictor', type=str, default="dio", help='Select F0 predictor, can select crepe,pm,dio,harvest,rmvpe, default pm(note: crepe is original F0 using mean filter)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--num_processes', type=int, default=1, help='You are advised to set the number of processes to the same as the number of CPU cores'
|
||||
|
@ -317,9 +317,12 @@
|
||||
"#@markdown\n",
|
||||
"%cd /content/so-vits-svc\n",
|
||||
"\n",
|
||||
"f0_predictor = \"crepe\" #@param [\"crepe\", \"pm\", \"dio\", \"harvest\"]\n",
|
||||
"f0_predictor = \"crepe\" #@param [\"crepe\", \"pm\", \"dio\", \"harvest\", \"rmvpe\"]\n",
|
||||
"use_diff = True #@param {type:\"boolean\"}\n",
|
||||
"\n",
|
||||
"if f0_predictor == \"rmvpe\" and not os.path.exists(\"./pretrain/rmvpe.pt\"):\n",
|
||||
" !curl -L https://huggingface.co/datasets/ylzz1997/rmvpe_pretrain_model/resolve/main/rmvpe.pt -o pretrain/rmvpe.pt\n",
|
||||
"\n",
|
||||
"diff_param = \"\"\n",
|
||||
"if use_diff:\n",
|
||||
" diff_param = \"--use_diff\"\n",
|
||||
@ -602,7 +605,7 @@
|
||||
"if auto_predict_f0:\n",
|
||||
" apf = \" -a \"\n",
|
||||
"\n",
|
||||
"f0_predictor = \"crepe\" #@param [\"crepe\", \"pm\", \"dio\", \"harvest\"]\n",
|
||||
"f0_predictor = \"crepe\" #@param [\"crepe\", \"pm\", \"dio\", \"harvest\", \"rmvpe\"]\n",
|
||||
"\n",
|
||||
"enhance = False #@param {type:\"boolean\"}\n",
|
||||
"ehc = \"\"\n",
|
||||
@ -618,6 +621,10 @@
|
||||
"url, output = get_speech_encoder(config_path)\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"if f0_predictor == \"rmvpe\" and not os.path.exists(\"./pretrain/rmvpe.pt\"):\n",
|
||||
" !curl -L https://huggingface.co/datasets/ylzz1997/rmvpe_pretrain_model/resolve/main/rmvpe.pt -o pretrain/rmvpe.pt\n",
|
||||
"\n",
|
||||
"if not os.path.exists(output):\n",
|
||||
" !curl -L {url} -o {output}\n",
|
||||
"\n",
|
||||
|
2
train.py
2
train.py
@ -140,7 +140,7 @@ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loade
|
||||
if writers is not None:
|
||||
writer, writer_eval = writers
|
||||
|
||||
half_type = torch.float16 if hps.train.half_type=="fp16" else torch.bfloat16
|
||||
half_type = torch.bfloat16 if hps.train.half_type=="bf16" else torch.float16
|
||||
|
||||
# train_loader.batch_sampler.set_epoch(epoch)
|
||||
global global_step
|
||||
|
5
utils.py
5
utils.py
@ -96,7 +96,10 @@ def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs):
|
||||
f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||||
elif f0_predictor == "dio":
|
||||
from modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
||||
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||||
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||||
elif f0_predictor == "rmvpe":
|
||||
from modules.F0Predictor.RMVPEF0Predictor import RMVPEF0Predictor
|
||||
f0_predictor_object = RMVPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
|
||||
else:
|
||||
raise Exception("Unknown f0 predictor")
|
||||
return f0_predictor_object
|
||||
|
7
webUI.py
7
webUI.py
@ -4,6 +4,7 @@ import logging
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from itertools import chain
|
||||
@ -224,9 +225,9 @@ def vc_fn2(_text, _lang, _gender, _rate, _volume, sid, output_format, vc_transfo
|
||||
_volume = f"+{int(_volume*100)}%" if _volume >= 0 else f"{int(_volume*100)}%"
|
||||
if _lang == "Auto":
|
||||
_gender = "Male" if _gender == "男" else "Female"
|
||||
subprocess.run([r"python", "edgetts/tts.py", _text, _lang, _rate, _volume, _gender])
|
||||
subprocess.run([sys.executable, "edgetts/tts.py", _text, _lang, _rate, _volume, _gender])
|
||||
else:
|
||||
subprocess.run([r"python", "edgetts/tts.py", _text, _lang, _rate, _volume])
|
||||
subprocess.run([sys.executable, "edgetts/tts.py", _text, _lang, _rate, _volume])
|
||||
target_sr = 44100
|
||||
y, sr = librosa.load("tts.wav")
|
||||
resampled_y = librosa.resample(y, orig_sr=sr, target_sr=target_sr)
|
||||
@ -322,7 +323,7 @@ with gr.Blocks(
|
||||
<font size=2> 推理设置</font>
|
||||
""")
|
||||
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声勾选此项会究极跑调)", value=False)
|
||||
f0_predictor = gr.Dropdown(label="选择F0预测器,可选择crepe,pm,dio,harvest,默认为pm(注意:crepe为原F0使用均值滤波器)", choices=["pm","dio","harvest","crepe"], value="pm")
|
||||
f0_predictor = gr.Dropdown(label="选择F0预测器,可选择crepe,pm,dio,harvest,rmvpe,默认为pm(注意:crepe为原F0使用均值滤波器)", choices=["pm","dio","harvest","crepe","rmvpe"], value="pm")
|
||||
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
||||
cluster_ratio = gr.Number(label="聚类模型/特征检索混合比例,0-1之间,0即不启用聚类/特征检索。使用聚类/特征检索能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
||||
slice_db = gr.Number(label="切片阈值", value=-40)
|
||||
|
Loading…
Reference in New Issue
Block a user