From 4ae070bb7705c6c90ef17ac7beb2ee8694bdba8b Mon Sep 17 00:00:00 2001 From: magic-akari Date: Wed, 5 Jul 2023 14:52:16 +0800 Subject: [PATCH] chore: make Ruff happy --- .ruff.toml | 2 +- modules/DSConv.py | 4 ++-- modules/mel_processing.py | 4 +++- modules/modules.py | 10 ++++++---- webUI.py | 12 ++++++++---- 5 files changed, 20 insertions(+), 12 deletions(-) diff --git a/.ruff.toml b/.ruff.toml index ba961ac..fb05db4 100644 --- a/.ruff.toml +++ b/.ruff.toml @@ -1,4 +1,4 @@ select = ["E", "F", "I"] # Never enforce `E501` (line length violations). -ignore = ["E501"] +ignore = ["E501", "E741"] diff --git a/modules/DSConv.py b/modules/DSConv.py index 9909521..44c2bf6 100644 --- a/modules/DSConv.py +++ b/modules/DSConv.py @@ -1,6 +1,6 @@ -import torch import torch.nn as nn -from torch.nn.utils import weight_norm, remove_weight_norm +from torch.nn.utils import remove_weight_norm, weight_norm + class Depthwise_Separable_Conv1D(nn.Module): def __init__( diff --git a/modules/mel_processing.py b/modules/mel_processing.py index 8ac0717..c21e4bf 100644 --- a/modules/mel_processing.py +++ b/modules/mel_processing.py @@ -53,7 +53,9 @@ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False) y = y.squeeze(1) y_dtype = y.dtype - if y.dtype == torch.bfloat16: y = y.to(torch.float32) + if y.dtype == torch.bfloat16: + y = y.to(torch.float32) + spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec).to(y_dtype) diff --git a/modules/modules.py b/modules/modules.py index f30b46c..2b9ad90 100644 --- a/modules/modules.py +++ b/modules/modules.py @@ -1,12 +1,14 @@ import torch from torch import nn -from torch.nn import Conv1d from torch.nn import functional as F -from modules.DSConv import weight_norm_modules, remove_weight_norm_modules, Depthwise_Separable_Conv1D - import modules.commons as commons -from modules.commons import init_weights, get_padding +from modules.commons import get_padding, init_weights +from modules.DSConv import ( + Depthwise_Separable_Conv1D, + remove_weight_norm_modules, + weight_norm_modules, +) LRELU_SLOPE = 0.1 diff --git a/webUI.py b/webUI.py index 4f3ee9f..6cd429a 100644 --- a/webUI.py +++ b/webUI.py @@ -6,6 +6,7 @@ import subprocess import time import traceback from itertools import chain +from pathlib import Path # os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt") import gradio as gr @@ -15,7 +16,6 @@ import numpy as np import soundfile import torch from scipy.io import wavfile -from pathlib import Path from compress_model import removeOptimizer from inference.infer_tool import Svc @@ -172,14 +172,18 @@ def vc_fn(sid, input_audio, output_format, vc_transform, auto_f0,cluster_ratio, model.clear_empty() #os.remove(temp_path) #构建保存文件的路径,并保存到results文件夹内 - timestamp = str(int(time.time())) + str(int(time.time())) if not os.path.exists("results"): os.makedirs("results") key = "auto" if auto_f0 else f"{int(vc_transform)}key" cluster = "_" if cluster_ratio == 0 else f"_{cluster_ratio}_" isdiffusion = "sovits" - if model.shallow_diffusion : isdiffusion = "sovdiff" - if model.only_diffusion : isdiffusion = "diff" + if model.shallow_diffusion: + isdiffusion = "sovdiff" + + if model.only_diffusion: + isdiffusion = "diff" + output_file_name = 'result_'+truncated_basename+f'_{sid}_{key}{cluster}{isdiffusion}.{output_format}' output_file = os.path.join("results", output_file_name) soundfile.write(output_file, _audio, model.target_sample, format=output_format)