mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-01-08 11:57:43 +08:00
Add files via upload
This commit is contained in:
parent
8fd0d43902
commit
8b685696a3
@ -1,9 +1,14 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Conv1d, Conv2d
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.utils import spectral_norm, weight_norm
|
||||
|
||||
import modules.attentions as attentions
|
||||
import modules.commons as commons
|
||||
import modules.modules as modules
|
||||
import utils
|
||||
from modules.commons import get_padding
|
||||
from utils import f0_to_coarse
|
||||
|
||||
|
||||
@ -15,7 +20,9 @@ class ResidualCouplingBlock(nn.Module):
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
n_flows=4,
|
||||
gin_channels=0):
|
||||
gin_channels=0,
|
||||
share_parameter=False
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@ -26,10 +33,13 @@ class ResidualCouplingBlock(nn.Module):
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.flows = nn.ModuleList()
|
||||
|
||||
self.wn = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=gin_channels) if share_parameter else None
|
||||
|
||||
for i in range(n_flows):
|
||||
self.flows.append(
|
||||
modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
|
||||
gin_channels=gin_channels, mean_only=True))
|
||||
gin_channels=gin_channels, mean_only=True, wn_sharing_parameter=self.wn))
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
@ -41,6 +51,79 @@ class ResidualCouplingBlock(nn.Module):
|
||||
x = flow(x, x_mask, g=g, reverse=reverse)
|
||||
return x
|
||||
|
||||
class TransformerCouplingBlock(nn.Module):
|
||||
def __init__(self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
n_flows=4,
|
||||
gin_channels=0,
|
||||
share_parameter=False
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.n_flows = n_flows
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.flows = nn.ModuleList()
|
||||
|
||||
self.wn = attentions.FFT(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, isflow = True, gin_channels = self.gin_channels) if share_parameter else None
|
||||
|
||||
for i in range(n_flows):
|
||||
self.flows.append(
|
||||
modules.TransformerCouplingLayer(channels, hidden_channels, kernel_size, n_layers, n_heads, p_dropout, filter_channels, mean_only=True, wn_sharing_parameter=self.wn, gin_channels = self.gin_channels))
|
||||
self.flows.append(modules.Flip())
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
if not reverse:
|
||||
for flow in self.flows:
|
||||
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
||||
else:
|
||||
for flow in reversed(self.flows):
|
||||
x = flow(x, x_mask, g=g, reverse=reverse)
|
||||
return x
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, x, x_lengths, g=None):
|
||||
# print(x.shape,x_lengths.shape)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||
x = self.pre(x) * x_mask
|
||||
x = self.enc(x, x_mask, g=g)
|
||||
stats = self.proj(x) * x_mask
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
||||
return z, m, logs, x_mask
|
||||
|
||||
|
||||
class TextEncoder(nn.Module):
|
||||
def __init__(self,
|
||||
@ -149,6 +232,12 @@ class SynthesizerTrn(nn.Module):
|
||||
sampling_rate=44100,
|
||||
vol_embedding=False,
|
||||
vocoder_name = "nsf-hifigan",
|
||||
use_depthwise_conv = False,
|
||||
use_automatic_f0_prediction = True,
|
||||
flow_share_parameter = False,
|
||||
n_flow_layer = 4,
|
||||
n_layers_trans_flow = 3,
|
||||
use_transformer_flow = False,
|
||||
**kwargs):
|
||||
|
||||
super().__init__()
|
||||
@ -171,6 +260,9 @@ class SynthesizerTrn(nn.Module):
|
||||
self.ssl_dim = ssl_dim
|
||||
self.vol_embedding = vol_embedding
|
||||
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
||||
self.use_depthwise_conv = use_depthwise_conv
|
||||
self.use_automatic_f0_prediction = use_automatic_f0_prediction
|
||||
self.n_layers_trans_flow = n_layers_trans_flow
|
||||
if vol_embedding:
|
||||
self.emb_vol = nn.Linear(1, hidden_channels)
|
||||
|
||||
@ -195,8 +287,11 @@ class SynthesizerTrn(nn.Module):
|
||||
"upsample_initial_channel": upsample_initial_channel,
|
||||
"upsample_kernel_sizes": upsample_kernel_sizes,
|
||||
"gin_channels": gin_channels,
|
||||
"use_depthwise_conv":use_depthwise_conv
|
||||
}
|
||||
|
||||
modules.set_Conv1dModel(self.use_depthwise_conv)
|
||||
|
||||
if vocoder_name == "nsf-hifigan":
|
||||
from vdecoder.hifigan.models import Generator
|
||||
self.dec = Generator(h=hps)
|
||||
@ -208,17 +303,22 @@ class SynthesizerTrn(nn.Module):
|
||||
from vdecoder.hifigan.models import Generator
|
||||
self.dec = Generator(h=hps)
|
||||
|
||||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||
self.f0_decoder = F0Decoder(
|
||||
1,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
spk_channels=gin_channels
|
||||
)
|
||||
self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
||||
if use_transformer_flow:
|
||||
self.flow = TransformerCouplingBlock(inter_channels, hidden_channels, filter_channels, n_heads, n_layers_trans_flow, 5, p_dropout, n_flow_layer, gin_channels=gin_channels, share_parameter=flow_share_parameter)
|
||||
else:
|
||||
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, n_flow_layer, gin_channels=gin_channels, share_parameter=flow_share_parameter)
|
||||
if self.use_automatic_f0_prediction:
|
||||
self.f0_decoder = F0Decoder(
|
||||
1,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
spk_channels=gin_channels
|
||||
)
|
||||
self.emb_uv = nn.Embedding(2, hidden_channels)
|
||||
self.predict_f0 = False
|
||||
self.speaker_map = []
|
||||
@ -251,9 +351,16 @@ class SynthesizerTrn(nn.Module):
|
||||
|
||||
x_mask = torch.unsqueeze(torch.ones_like(f0), 1).to(c.dtype)
|
||||
# vol proj
|
||||
|
||||
vol = self.emb_vol(vol[:,:,None]).transpose(1,2) if vol is not None and self.vol_embedding else 0
|
||||
|
||||
|
||||
x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2) + vol
|
||||
|
||||
if self.use_automatic_f0_prediction and self.predict_f0:
|
||||
lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
|
||||
norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
|
||||
pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
|
||||
f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
|
||||
|
||||
z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), z=noise)
|
||||
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
||||
|
Loading…
Reference in New Issue
Block a user