mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-01-08 11:57:43 +08:00
Updata NSF-HIFIGAN Enhancer
This commit is contained in:
parent
c1600668d3
commit
b6243946c9
@ -114,7 +114,9 @@ class F0FilterException(Exception):
|
||||
class Svc(object):
|
||||
def __init__(self, net_g_path, config_path,
|
||||
device=None,
|
||||
cluster_model_path="logs/44k/kmeans_10000.pt"):
|
||||
cluster_model_path="logs/44k/kmeans_10000.pt",
|
||||
nsf_hifigan_enhance = False
|
||||
):
|
||||
self.net_g_path = net_g_path
|
||||
if device is None:
|
||||
self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
@ -125,11 +127,15 @@ class Svc(object):
|
||||
self.target_sample = self.hps_ms.data.sampling_rate
|
||||
self.hop_size = self.hps_ms.data.hop_length
|
||||
self.spk2id = self.hps_ms.spk
|
||||
self.nsf_hifigan_enhance = nsf_hifigan_enhance
|
||||
# 加载hubert
|
||||
self.hubert_model = utils.get_hubert_model().to(self.dev)
|
||||
self.load_model()
|
||||
if os.path.exists(cluster_model_path):
|
||||
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
|
||||
if self.nsf_hifigan_enhance:
|
||||
from modules.enhancer import Enhancer
|
||||
self.enhancer = Enhancer('nsf-hifigan', 'pretrain/nsf_hifigan/model',device=self.dev)
|
||||
|
||||
def load_model(self):
|
||||
# 获取模型配置
|
||||
@ -185,7 +191,8 @@ class Svc(object):
|
||||
auto_predict_f0=False,
|
||||
noice_scale=0.4,
|
||||
f0_filter=False,
|
||||
F0_mean_pooling=False
|
||||
F0_mean_pooling=False,
|
||||
enhancer_adaptive_key = 0
|
||||
):
|
||||
|
||||
speaker_id = self.spk2id.__dict__.get(speaker)
|
||||
@ -199,6 +206,13 @@ class Svc(object):
|
||||
with torch.no_grad():
|
||||
start = time.time()
|
||||
audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float()
|
||||
if self.nsf_hifigan_enhance:
|
||||
audio, _ = self.enhancer.enhance(
|
||||
audio[None,:],
|
||||
self.target_sample,
|
||||
f0[:,:,None],
|
||||
self.hps_ms.data.hop_length,
|
||||
adaptive_key = enhancer_adaptive_key)
|
||||
use_time = time.time() - start
|
||||
print("vits use time:{}".format(use_time))
|
||||
return audio, audio.shape[-1]
|
||||
@ -219,7 +233,8 @@ class Svc(object):
|
||||
clip_seconds=0,
|
||||
lg_num=0,
|
||||
lgr_num =0.75,
|
||||
F0_mean_pooling = False
|
||||
F0_mean_pooling = False,
|
||||
enhancer_adaptive_key = 0
|
||||
):
|
||||
wav_path = raw_audio_path
|
||||
chunks = slicer.cut(wav_path, db_thresh=slice_db)
|
||||
@ -258,7 +273,8 @@ class Svc(object):
|
||||
cluster_infer_ratio=cluster_infer_ratio,
|
||||
auto_predict_f0=auto_predict_f0,
|
||||
noice_scale=noice_scale,
|
||||
F0_mean_pooling = F0_mean_pooling
|
||||
F0_mean_pooling = F0_mean_pooling,
|
||||
enhancer_adaptive_key = enhancer_adaptive_key
|
||||
)
|
||||
_audio = out_audio.cpu().numpy()
|
||||
pad_len = int(self.target_sample * pad_seconds)
|
||||
|
@ -36,7 +36,8 @@ def main():
|
||||
parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则默认0即可')
|
||||
parser.add_argument('-lg', '--linear_gradient', type=float, default=0, help='两段音频切片的交叉淡入长度,如果强制切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,单位为秒')
|
||||
parser.add_argument('-fmp', '--f0_mean_pooling', type=bool, default=False, help='是否对F0使用均值滤波器(池化),对部分哑音有改善。注意,启动该选项会导致推理速度下降,默认关闭')
|
||||
|
||||
parser.add_argument('-eh', '--enhance', type=bool, default=False, help='是否使用NSF_HIFIGAN增强器,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭')
|
||||
|
||||
# 不用动的部分
|
||||
parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
|
||||
parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
|
||||
@ -44,11 +45,10 @@ def main():
|
||||
parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
|
||||
parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
|
||||
parser.add_argument('-lgr', '--linear_gradient_retain', type=float, default=0.75, help='自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭')
|
||||
|
||||
parser.add_argument('-eak', '--enhancer_adaptive_key', type=int, default=0, help='使增强器适应更高的音域(单位为半音数)|默认为0')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
|
||||
infer_tool.mkdir(["raw", "results"])
|
||||
clean_names = args.clean_names
|
||||
trans = args.trans
|
||||
spk_list = args.spk_list
|
||||
@ -62,6 +62,11 @@ def main():
|
||||
lg = args.linear_gradient
|
||||
lgr = args.linear_gradient_retain
|
||||
F0_mean_pooling = args.f0_mean_pooling
|
||||
enhance = args.enhance
|
||||
enhancer_adaptive_key = args.enhancer_adaptive_key
|
||||
|
||||
svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path,enhance)
|
||||
infer_tool.mkdir(["raw", "results"])
|
||||
|
||||
infer_tool.fill_a_to_b(trans, clean_names)
|
||||
for clean_name, tran in zip(clean_names, trans):
|
||||
@ -107,7 +112,8 @@ def main():
|
||||
cluster_infer_ratio=cluster_infer_ratio,
|
||||
auto_predict_f0=auto_predict_f0,
|
||||
noice_scale=noice_scale,
|
||||
F0_mean_pooling = F0_mean_pooling
|
||||
F0_mean_pooling = F0_mean_pooling,
|
||||
enhancer_adaptive_key = enhancer_adaptive_key
|
||||
)
|
||||
_audio = out_audio.cpu().numpy()
|
||||
pad_len = int(svc_model.target_sample * pad_seconds)
|
||||
@ -125,6 +131,7 @@ def main():
|
||||
cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
|
||||
res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
|
||||
soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
|
||||
|
||||
svc_model.clear_empty()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
105
modules/enhancer.py
Normal file
105
modules/enhancer.py
Normal file
@ -0,0 +1,105 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from vdecoder.nsf_hifigan.nvSTFT import STFT
|
||||
from vdecoder.nsf_hifigan.models import load_model
|
||||
from torchaudio.transforms import Resample
|
||||
|
||||
class Enhancer:
|
||||
def __init__(self, enhancer_type, enhancer_ckpt, device=None):
|
||||
if device is None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
self.device = device
|
||||
|
||||
if enhancer_type == 'nsf-hifigan':
|
||||
self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device)
|
||||
else:
|
||||
raise ValueError(f" [x] Unknown enhancer: {enhancer_type}")
|
||||
|
||||
self.resample_kernel = {}
|
||||
self.enhancer_sample_rate = self.enhancer.sample_rate()
|
||||
self.enhancer_hop_size = self.enhancer.hop_size()
|
||||
|
||||
def enhance(self,
|
||||
audio, # 1, T
|
||||
sample_rate,
|
||||
f0, # 1, n_frames, 1
|
||||
hop_size,
|
||||
adaptive_key = 0,
|
||||
silence_front = 0
|
||||
):
|
||||
# enhancer start time
|
||||
start_frame = int(silence_front * sample_rate / hop_size)
|
||||
real_silence_front = start_frame * hop_size / sample_rate
|
||||
audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ]
|
||||
f0 = f0[: , start_frame :, :]
|
||||
|
||||
# adaptive parameters
|
||||
adaptive_factor = 2 ** ( -adaptive_key / 12)
|
||||
adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100))
|
||||
real_factor = self.enhancer_sample_rate / adaptive_sample_rate
|
||||
|
||||
# resample the ddsp output
|
||||
if sample_rate == adaptive_sample_rate:
|
||||
audio_res = audio
|
||||
else:
|
||||
key_str = str(sample_rate) + str(adaptive_sample_rate)
|
||||
if key_str not in self.resample_kernel:
|
||||
self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device)
|
||||
audio_res = self.resample_kernel[key_str](audio)
|
||||
|
||||
n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1)
|
||||
|
||||
# resample f0
|
||||
f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy()
|
||||
f0_np *= real_factor
|
||||
time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor
|
||||
time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames)
|
||||
f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1])
|
||||
f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames
|
||||
|
||||
# enhance
|
||||
enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res)
|
||||
|
||||
# resample the enhanced output
|
||||
if adaptive_factor != 0:
|
||||
key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate)
|
||||
if key_str not in self.resample_kernel:
|
||||
self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device)
|
||||
enhanced_audio = self.resample_kernel[key_str](enhanced_audio)
|
||||
|
||||
# pad the silence frames
|
||||
if start_frame > 0:
|
||||
enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0))
|
||||
|
||||
return enhanced_audio, enhancer_sample_rate
|
||||
|
||||
|
||||
class NsfHifiGAN(torch.nn.Module):
|
||||
def __init__(self, model_path, device=None):
|
||||
super().__init__()
|
||||
if device is None:
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
self.device = device
|
||||
print('| Load HifiGAN: ', model_path)
|
||||
self.model, self.h = load_model(model_path, device=self.device)
|
||||
|
||||
def sample_rate(self):
|
||||
return self.h.sampling_rate
|
||||
|
||||
def hop_size(self):
|
||||
return self.h.hop_size
|
||||
|
||||
def forward(self, audio, f0):
|
||||
stft = STFT(
|
||||
self.h.sampling_rate,
|
||||
self.h.num_mels,
|
||||
self.h.n_fft,
|
||||
self.h.win_size,
|
||||
self.h.hop_size,
|
||||
self.h.fmin,
|
||||
self.h.fmax)
|
||||
with torch.no_grad():
|
||||
mel = stft.get_mel(audio)
|
||||
enhanced_audio = self.model(mel, f0[:,:mel.size(-1)]).view(-1)
|
||||
return enhanced_audio, self.h.sampling_rate
|
0
pretrain/nsf_hifigan/put_nsf_hifigan_ckpt_here
Normal file
0
pretrain/nsf_hifigan/put_nsf_hifigan_ckpt_here
Normal file
15
vdecoder/nsf_hifigan/env.py
Normal file
15
vdecoder/nsf_hifigan/env.py
Normal file
@ -0,0 +1,15 @@
|
||||
import os
|
||||
import shutil
|
||||
|
||||
|
||||
class AttrDict(dict):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(AttrDict, self).__init__(*args, **kwargs)
|
||||
self.__dict__ = self
|
||||
|
||||
|
||||
def build_env(config, config_name, path):
|
||||
t_path = os.path.join(path, config_name)
|
||||
if config != t_path:
|
||||
os.makedirs(path, exist_ok=True)
|
||||
shutil.copyfile(config, os.path.join(path, config_name))
|
435
vdecoder/nsf_hifigan/models.py
Normal file
435
vdecoder/nsf_hifigan/models.py
Normal file
@ -0,0 +1,435 @@
|
||||
import os
|
||||
import json
|
||||
from .env import AttrDict
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.nn as nn
|
||||
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from .utils import init_weights, get_padding
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
def load_model(model_path, device='cuda'):
|
||||
config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
|
||||
with open(config_file) as f:
|
||||
data = f.read()
|
||||
|
||||
json_config = json.loads(data)
|
||||
h = AttrDict(json_config)
|
||||
|
||||
generator = Generator(h).to(device)
|
||||
|
||||
cp_dict = torch.load(model_path, map_location=device)
|
||||
generator.load_state_dict(cp_dict['generator'])
|
||||
generator.eval()
|
||||
generator.remove_weight_norm()
|
||||
del cp_dict
|
||||
return generator, h
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||
super(ResBlock1, self).__init__()
|
||||
self.h = h
|
||||
self.convs1 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2])))
|
||||
])
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||
padding=get_padding(kernel_size, 1)))
|
||||
])
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
def forward(self, x):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock2(torch.nn.Module):
|
||||
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
|
||||
super(ResBlock2, self).__init__()
|
||||
self.h = h
|
||||
self.convs = nn.ModuleList([
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]))),
|
||||
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1])))
|
||||
])
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
def forward(self, x):
|
||||
for c in self.convs:
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
flag_for_pulse=False)
|
||||
samp_rate: sampling rate in Hz
|
||||
harmonic_num: number of harmonic overtones (default 0)
|
||||
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||
noise_std: std of Gaussian noise (default 0.003)
|
||||
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
self.harmonic_num = harmonic_num
|
||||
self.dim = self.harmonic_num + 1
|
||||
self.sampling_rate = samp_rate
|
||||
self.voiced_threshold = voiced_threshold
|
||||
|
||||
def _f02uv(self, f0):
|
||||
# generate uv signal
|
||||
uv = torch.ones_like(f0)
|
||||
uv = uv * (f0 > self.voiced_threshold)
|
||||
return uv
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(self, f0, upp):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
output uv: tensor(batchsize=1, length, 1)
|
||||
"""
|
||||
f0 = f0.unsqueeze(-1)
|
||||
fn = torch.multiply(f0, torch.arange(1, self.dim + 1, device=f0.device).reshape((1, 1, -1)))
|
||||
rad_values = (fn / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(fn.shape[0], fn.shape[2], device=fn.device)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
is_half = rad_values.dtype is not torch.float32
|
||||
tmp_over_one = torch.cumsum(rad_values.double(), 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||
if is_half:
|
||||
tmp_over_one = tmp_over_one.half()
|
||||
else:
|
||||
tmp_over_one = tmp_over_one.float()
|
||||
tmp_over_one *= upp
|
||||
tmp_over_one = F.interpolate(
|
||||
tmp_over_one.transpose(2, 1), scale_factor=upp,
|
||||
mode='linear', align_corners=True
|
||||
).transpose(2, 1)
|
||||
rad_values = F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
||||
tmp_over_one %= 1
|
||||
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||
cumsum_shift = torch.zeros_like(rad_values)
|
||||
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
rad_values = rad_values.double()
|
||||
cumsum_shift = cumsum_shift.double()
|
||||
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
||||
if is_half:
|
||||
sine_waves = sine_waves.half()
|
||||
else:
|
||||
sine_waves = sine_waves.float()
|
||||
sine_waves = sine_waves * self.sine_amp
|
||||
uv = self._f02uv(f0)
|
||||
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
harmonic_num: number of harmonic above F0 (default: 0)
|
||||
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||
note that amplitude of noise in unvoiced is decided
|
||||
by sine_amp
|
||||
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||
F0_sampled (batchsize, length, 1)
|
||||
Sine_source (batchsize, length, 1)
|
||||
noise_source (batchsize, length 1)
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x, upp):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
return sine_merge
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(self, h):
|
||||
super(Generator, self).__init__()
|
||||
self.h = h
|
||||
self.num_kernels = len(h.resblock_kernel_sizes)
|
||||
self.num_upsamples = len(h.upsample_rates)
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=h.sampling_rate,
|
||||
harmonic_num=8
|
||||
)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
||||
resblock = ResBlock1 if h.resblock == '1' else ResBlock2
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
||||
c_cur = h.upsample_initial_channel // (2 ** (i + 1))
|
||||
self.ups.append(weight_norm(
|
||||
ConvTranspose1d(h.upsample_initial_channel // (2 ** i), h.upsample_initial_channel // (2 ** (i + 1)),
|
||||
k, u, padding=(k - u) // 2)))
|
||||
if i + 1 < len(h.upsample_rates): #
|
||||
stride_f0 = int(np.prod(h.upsample_rates[i + 1:]))
|
||||
self.noise_convs.append(Conv1d(
|
||||
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
||||
else:
|
||||
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
||||
self.resblocks = nn.ModuleList()
|
||||
ch = h.upsample_initial_channel
|
||||
for i in range(len(self.ups)):
|
||||
ch //= 2
|
||||
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
||||
self.resblocks.append(resblock(h, ch, k, d))
|
||||
|
||||
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
||||
self.ups.apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
self.upp = int(np.prod(h.upsample_rates))
|
||||
|
||||
def forward(self, x, f0):
|
||||
har_source = self.m_source(f0, self.upp).transpose(1, 2)
|
||||
x = self.conv_pre(x)
|
||||
for i in range(self.num_upsamples):
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
x = self.ups[i](x)
|
||||
x_source = self.noise_convs[i](har_source)
|
||||
x = x + x_source
|
||||
xs = None
|
||||
for j in range(self.num_kernels):
|
||||
if xs is None:
|
||||
xs = self.resblocks[i * self.num_kernels + j](x)
|
||||
else:
|
||||
xs += self.resblocks[i * self.num_kernels + j](x)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
self.period = period
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
||||
])
|
||||
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, periods=None):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
|
||||
self.discriminators = nn.ModuleList()
|
||||
for period in self.periods:
|
||||
self.discriminators.append(DiscriminatorP(period))
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
self.convs = nn.ModuleList([
|
||||
norm_f(Conv1d(1, 128, 15, 1, padding=7)),
|
||||
norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
|
||||
norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
|
||||
norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
|
||||
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
||||
])
|
||||
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
||||
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiScaleDiscriminator(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super(MultiScaleDiscriminator, self).__init__()
|
||||
self.discriminators = nn.ModuleList([
|
||||
DiscriminatorS(use_spectral_norm=True),
|
||||
DiscriminatorS(),
|
||||
DiscriminatorS(),
|
||||
])
|
||||
self.meanpools = nn.ModuleList([
|
||||
AvgPool1d(4, 2, padding=2),
|
||||
AvgPool1d(4, 2, padding=2)
|
||||
])
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
if i != 0:
|
||||
y = self.meanpools[i - 1](y)
|
||||
y_hat = self.meanpools[i - 1](y_hat)
|
||||
y_d_r, fmap_r = d(y)
|
||||
y_d_g, fmap_g = d(y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss * 2
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
r_loss = torch.mean((1 - dr) ** 2)
|
||||
g_loss = torch.mean(dg ** 2)
|
||||
loss += (r_loss + g_loss)
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
l = torch.mean((1 - dg) ** 2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
134
vdecoder/nsf_hifigan/nvSTFT.py
Normal file
134
vdecoder/nsf_hifigan/nvSTFT.py
Normal file
@ -0,0 +1,134 @@
|
||||
import math
|
||||
import os
|
||||
os.environ["LRU_CACHE_CAPACITY"] = "3"
|
||||
import random
|
||||
import torch
|
||||
import torch.utils.data
|
||||
import numpy as np
|
||||
import librosa
|
||||
from librosa.util import normalize
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
from scipy.io.wavfile import read
|
||||
import soundfile as sf
|
||||
import torch.nn.functional as F
|
||||
|
||||
def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
|
||||
sampling_rate = None
|
||||
try:
|
||||
data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
|
||||
except Exception as ex:
|
||||
print(f"'{full_path}' failed to load.\nException:")
|
||||
print(ex)
|
||||
if return_empty_on_exception:
|
||||
return [], sampling_rate or target_sr or 48000
|
||||
else:
|
||||
raise Exception(ex)
|
||||
|
||||
if len(data.shape) > 1:
|
||||
data = data[:, 0]
|
||||
assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
|
||||
|
||||
if np.issubdtype(data.dtype, np.integer): # if audio data is type int
|
||||
max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
|
||||
else: # if audio data is type fp32
|
||||
max_mag = max(np.amax(data), -np.amin(data))
|
||||
max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
|
||||
|
||||
data = torch.FloatTensor(data.astype(np.float32))/max_mag
|
||||
|
||||
if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
|
||||
return [], sampling_rate or target_sr or 48000
|
||||
if target_sr is not None and sampling_rate != target_sr:
|
||||
data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
|
||||
sampling_rate = target_sr
|
||||
|
||||
return data, sampling_rate
|
||||
|
||||
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
||||
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
||||
|
||||
def dynamic_range_decompression(x, C=1):
|
||||
return np.exp(x) / C
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
return torch.exp(x) / C
|
||||
|
||||
class STFT():
|
||||
def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
|
||||
self.target_sr = sr
|
||||
|
||||
self.n_mels = n_mels
|
||||
self.n_fft = n_fft
|
||||
self.win_size = win_size
|
||||
self.hop_length = hop_length
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.clip_val = clip_val
|
||||
self.mel_basis = {}
|
||||
self.hann_window = {}
|
||||
|
||||
def get_mel(self, y, keyshift=0, speed=1, center=False):
|
||||
sampling_rate = self.target_sr
|
||||
n_mels = self.n_mels
|
||||
n_fft = self.n_fft
|
||||
win_size = self.win_size
|
||||
hop_length = self.hop_length
|
||||
fmin = self.fmin
|
||||
fmax = self.fmax
|
||||
clip_val = self.clip_val
|
||||
|
||||
factor = 2 ** (keyshift / 12)
|
||||
n_fft_new = int(np.round(n_fft * factor))
|
||||
win_size_new = int(np.round(win_size * factor))
|
||||
hop_length_new = int(np.round(hop_length * speed))
|
||||
|
||||
if torch.min(y) < -1.:
|
||||
print('min value is ', torch.min(y))
|
||||
if torch.max(y) > 1.:
|
||||
print('max value is ', torch.max(y))
|
||||
|
||||
mel_basis_key = str(fmax)+'_'+str(y.device)
|
||||
if mel_basis_key not in self.mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
||||
self.mel_basis[mel_basis_key] = torch.from_numpy(mel).float().to(y.device)
|
||||
|
||||
keyshift_key = str(keyshift)+'_'+str(y.device)
|
||||
if keyshift_key not in self.hann_window:
|
||||
self.hann_window[keyshift_key] = torch.hann_window(win_size_new).to(y.device)
|
||||
|
||||
pad_left = (win_size_new - hop_length_new) //2
|
||||
pad_right = max((win_size_new- hop_length_new + 1) //2, win_size_new - y.size(-1) - pad_left)
|
||||
if pad_right < y.size(-1):
|
||||
mode = 'reflect'
|
||||
else:
|
||||
mode = 'constant'
|
||||
y = torch.nn.functional.pad(y.unsqueeze(1), (pad_left, pad_right), mode = mode)
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(y, n_fft_new, hop_length=hop_length_new, win_length=win_size_new, window=self.hann_window[keyshift_key],
|
||||
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
|
||||
# print(111,spec)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
||||
if keyshift != 0:
|
||||
size = n_fft // 2 + 1
|
||||
resize = spec.size(1)
|
||||
if resize < size:
|
||||
spec = F.pad(spec, (0, 0, 0, size-resize))
|
||||
spec = spec[:, :size, :] * win_size / win_size_new
|
||||
|
||||
# print(222,spec)
|
||||
spec = torch.matmul(self.mel_basis[mel_basis_key], spec)
|
||||
# print(333,spec)
|
||||
spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
|
||||
# print(444,spec)
|
||||
return spec
|
||||
|
||||
def __call__(self, audiopath):
|
||||
audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
|
||||
spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
|
||||
return spect
|
||||
|
||||
stft = STFT()
|
68
vdecoder/nsf_hifigan/utils.py
Normal file
68
vdecoder/nsf_hifigan/utils.py
Normal file
@ -0,0 +1,68 @@
|
||||
import glob
|
||||
import os
|
||||
import matplotlib
|
||||
import torch
|
||||
from torch.nn.utils import weight_norm
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pylab as plt
|
||||
|
||||
|
||||
def plot_spectrogram(spectrogram):
|
||||
fig, ax = plt.subplots(figsize=(10, 2))
|
||||
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
||||
interpolation='none')
|
||||
plt.colorbar(im, ax=ax)
|
||||
|
||||
fig.canvas.draw()
|
||||
plt.close()
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def apply_weight_norm(m):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
weight_norm(m)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size*dilation - dilation)/2)
|
||||
|
||||
|
||||
def load_checkpoint(filepath, device):
|
||||
assert os.path.isfile(filepath)
|
||||
print("Loading '{}'".format(filepath))
|
||||
checkpoint_dict = torch.load(filepath, map_location=device)
|
||||
print("Complete.")
|
||||
return checkpoint_dict
|
||||
|
||||
|
||||
def save_checkpoint(filepath, obj):
|
||||
print("Saving checkpoint to {}".format(filepath))
|
||||
torch.save(obj, filepath)
|
||||
print("Complete.")
|
||||
|
||||
|
||||
def del_old_checkpoints(cp_dir, prefix, n_models=2):
|
||||
pattern = os.path.join(cp_dir, prefix + '????????')
|
||||
cp_list = glob.glob(pattern) # get checkpoint paths
|
||||
cp_list = sorted(cp_list)# sort by iter
|
||||
if len(cp_list) > n_models: # if more than n_models models are found
|
||||
for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
|
||||
open(cp, 'w').close()# empty file contents
|
||||
os.unlink(cp)# delete file (move to trash when using Colab)
|
||||
|
||||
|
||||
def scan_checkpoint(cp_dir, prefix):
|
||||
pattern = os.path.join(cp_dir, prefix + '????????')
|
||||
cp_list = glob.glob(pattern)
|
||||
if len(cp_list) == 0:
|
||||
return None
|
||||
return sorted(cp_list)[-1]
|
||||
|
47
webUI.py
47
webUI.py
@ -9,6 +9,7 @@ import numpy as np
|
||||
import soundfile
|
||||
from inference.infer_tool import Svc
|
||||
import logging
|
||||
import traceback
|
||||
|
||||
import subprocess
|
||||
import edge_tts
|
||||
@ -26,12 +27,14 @@ logging.getLogger('multipart').setLevel(logging.WARNING)
|
||||
|
||||
model = None
|
||||
spk = None
|
||||
debug=False
|
||||
|
||||
cuda = []
|
||||
if torch.cuda.is_available():
|
||||
for i in range(torch.cuda.device_count()):
|
||||
cuda.append("cuda:{}".format(i))
|
||||
|
||||
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling):
|
||||
def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling,enhancer_adaptive_key):
|
||||
global model
|
||||
try:
|
||||
if input_audio is None:
|
||||
@ -45,7 +48,7 @@ def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise
|
||||
audio = librosa.to_mono(audio.transpose(1, 0))
|
||||
temp_path = "temp.wav"
|
||||
soundfile.write(temp_path, audio, sampling_rate, format="wav")
|
||||
_audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling)
|
||||
_audio = model.slice_inference(temp_path, sid, vc_transform, slice_db, cluster_ratio, auto_f0, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling,enhancer_adaptive_key)
|
||||
model.clear_empty()
|
||||
os.remove(temp_path)
|
||||
#构建保存文件的路径,并保存到results文件夹内
|
||||
@ -55,8 +58,10 @@ def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise
|
||||
soundfile.write(output_file, _audio, model.target_sample, format="wav")
|
||||
return "Success", (model.target_sample, _audio)
|
||||
except Exception as e:
|
||||
if debug:traceback.print_exc()
|
||||
return "自动保存失败,请手动保存,音乐输出见下", (model.target_sample, _audio)
|
||||
except Exception as e:
|
||||
if debug:traceback.print_exc()
|
||||
return "异常信息:"+str(e)+"\n请排障后重试",None
|
||||
|
||||
def tts_func(_text,_rate):
|
||||
@ -83,7 +88,7 @@ def tts_func(_text,_rate):
|
||||
p.wait()
|
||||
return output_file
|
||||
|
||||
def vc_fn2(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,F0_mean_pooling):
|
||||
def vc_fn2(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,F0_mean_pooling,enhancer_adaptive_key):
|
||||
#使用edge-tts把文字转成音频
|
||||
output_file=tts_func(text2tts,tts_rate)
|
||||
|
||||
@ -100,7 +105,7 @@ def vc_fn2(sid, input_audio, vc_transform, auto_f0,cluster_ratio, slice_db, nois
|
||||
sample_rate, data=gr_pu.audio_from_file(save_path2)
|
||||
vc_input=(sample_rate, data)
|
||||
|
||||
a,b=vc_fn(sid, vc_input, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling)
|
||||
a,b=vc_fn(sid, vc_input, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling,enhancer_adaptive_key)
|
||||
os.remove(output_file)
|
||||
os.remove(save_path2)
|
||||
return a,b
|
||||
@ -126,10 +131,12 @@ with app:
|
||||
""")
|
||||
cluster_model_path = gr.File(label="聚类模型文件")
|
||||
device = gr.Dropdown(label="推理设备,默认为自动选择cpu和gpu",choices=["Auto",*cuda,"cpu"],value="Auto")
|
||||
enhance = gr.Checkbox(label="是否使用NSF_HIFIGAN增强,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭", value=False)
|
||||
gr.Markdown(value="""
|
||||
<font size=3>全部上传完毕后(全部文件模块显示download),点击模型解析进行解析:</font>
|
||||
""")
|
||||
model_analysis_button = gr.Button(value="模型解析")
|
||||
model_unload_button = gr.Button(value="模型卸载")
|
||||
sid = gr.Dropdown(label="音色(说话人)")
|
||||
sid_output = gr.Textbox(label="Output Message")
|
||||
|
||||
@ -147,29 +154,33 @@ with app:
|
||||
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
|
||||
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
|
||||
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75,interactive=True)
|
||||
enhancer_adaptive_key = gr.Number(label="使增强器适应更高的音域(单位为半音数)|默认为0", value=0,interactive=True)
|
||||
vc_submit = gr.Button("音频直接转换", variant="primary")
|
||||
vc_submit2 = gr.Button("文字转音频+转换", variant="primary")
|
||||
vc_output1 = gr.Textbox(label="Output Message")
|
||||
vc_output2 = gr.Audio(label="Output Audio")
|
||||
def modelAnalysis(model_path,config_path,cluster_model_path,device):
|
||||
def modelAnalysis(model_path,config_path,cluster_model_path,device,enhance):
|
||||
global model
|
||||
debug=False
|
||||
if debug:
|
||||
model = Svc(model_path.name, config_path.name,device=device if device!="Auto" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
|
||||
try:
|
||||
model = Svc(model_path.name, config_path.name,device=device if device!="Auto" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "",nsf_hifigan_enhance=enhance)
|
||||
spks = list(model.spk2id.keys())
|
||||
device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev)
|
||||
return sid.update(choices = spks,value=spks[0]),"ok,模型被加载到了设备{}之上".format(device_name)
|
||||
except Exception as e:
|
||||
if debug:traceback.print_exc()
|
||||
return "","异常信息:"+str(e)+"\n请排障后重试"
|
||||
def modelUnload():
|
||||
global model
|
||||
if model is None:
|
||||
return sid.update(choices = [],value=""),"没有模型需要卸载!"
|
||||
else:
|
||||
try:
|
||||
model = Svc(model_path.name, config_path.name,device=device if device!="Auto" else None,cluster_model_path= cluster_model_path.name if cluster_model_path!=None else "")
|
||||
spks = list(model.spk2id.keys())
|
||||
device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev)
|
||||
return sid.update(choices = spks,value=spks[0]),"ok,模型被加载到了设备{}之上".format(device_name)
|
||||
except Exception as e:
|
||||
return "","异常信息:"+str(e)+"\n请排障后重试"
|
||||
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling], [vc_output1, vc_output2])
|
||||
vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,F0_mean_pooling], [vc_output1, vc_output2])
|
||||
model_analysis_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device],[sid,sid_output])
|
||||
model = None
|
||||
torch.cuda.empty_cache()
|
||||
return sid.update(choices = [],value=""),"模型卸载完毕!"
|
||||
vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,F0_mean_pooling,enhancer_adaptive_key], [vc_output1, vc_output2])
|
||||
vc_submit2.click(vc_fn2, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,text2tts,tts_rate,F0_mean_pooling,enhancer_adaptive_key], [vc_output1, vc_output2])
|
||||
model_analysis_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device,enhance],[sid,sid_output])
|
||||
model_unload_button.click(modelUnload,[],[sid,sid_output])
|
||||
app.launch()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user