mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-04-04 22:44:04 +08:00
readme
This commit is contained in:
parent
f2dd5d8ec3
commit
dceeffd782
@ -277,6 +277,7 @@ The existing steps before clustering do not need to be changed. All you need to
|
||||
- Training process:
|
||||
- Train on a machine with good CPU performance. According to my experience, it takes about 4 minutes to train each speaker on a Tencent Cloud machine with 6-core CPU.
|
||||
- Execute `python cluster/train_cluster.py`. The output model will be saved in `logs/44k/kmeans_10000.pt`.
|
||||
- The clustering model can currently be trained using the gpu by executing `python cluster/train_cluster.py --gpu`
|
||||
- Inference process:
|
||||
- Specify `cluster_model_path` in `inference_main.py`.
|
||||
- Specify `cluster_infer_ratio` in `inference_main.py`, where `0` means not using clustering at all, `1` means only using clustering, and usually `0.5` is sufficient.
|
||||
|
@ -269,6 +269,7 @@ python inference_main.py -m "logs/44k/G_30400.pth" -c "configs/config.json" -n "
|
||||
+ 训练过程:
|
||||
+ 使用cpu性能较好的机器训练,据我的经验在腾讯云6核cpu训练每个speaker需要约4分钟即可完成训练
|
||||
+ 执行`python cluster/train_cluster.py` ,模型的输出会在`logs/44k/kmeans_10000.pt`
|
||||
+ 聚类模型目前可以使用gpu进行训练,执行`python cluster/train_cluster.py --gpu`
|
||||
+ 推理过程:
|
||||
+ `inference_main.py`中指定`cluster_model_path`
|
||||
+ `inference_main.py`中指定`cluster_infer_ratio`,`0`为完全不使用聚类,`1`为只使用聚类,通常设置`0.5`即可
|
||||
|
Loading…
x
Reference in New Issue
Block a user