mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-01-07 03:17:31 +08:00
120 lines
4.8 KiB
Python
120 lines
4.8 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import re
|
|
import wave
|
|
from random import shuffle
|
|
|
|
from loguru import logger
|
|
from tqdm import tqdm
|
|
|
|
import diffusion.logger.utils as du
|
|
|
|
pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
|
|
|
|
def get_wav_duration(file_path):
|
|
try:
|
|
with wave.open(file_path, 'rb') as wav_file:
|
|
# 获取音频帧数
|
|
n_frames = wav_file.getnframes()
|
|
# 获取采样率
|
|
framerate = wav_file.getframerate()
|
|
# 计算时长(秒)
|
|
return n_frames / float(framerate)
|
|
except Exception as e:
|
|
logger.error(f"Reading {file_path}")
|
|
raise e
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
|
|
parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
|
|
parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir")
|
|
parser.add_argument("--speech_encoder", type=str, default="vec768l12", help="choice a speech encoder|'vec768l12','vec256l9','hubertsoft','whisper-ppg','cnhubertlarge','dphubert','whisper-ppg-large','wavlmbase+'")
|
|
parser.add_argument("--vol_aug", action="store_true", help="Whether to use volume embedding and volume augmentation")
|
|
parser.add_argument("--tiny", action="store_true", help="Whether to train sovits tiny")
|
|
args = parser.parse_args()
|
|
|
|
config_template = json.load(open("configs_template/config_tiny_template.json")) if args.tiny else json.load(open("configs_template/config_template.json"))
|
|
train = []
|
|
val = []
|
|
idx = 0
|
|
spk_dict = {}
|
|
spk_id = 0
|
|
|
|
for speaker in tqdm(os.listdir(args.source_dir)):
|
|
spk_dict[speaker] = spk_id
|
|
spk_id += 1
|
|
wavs = []
|
|
|
|
for file_name in os.listdir(os.path.join(args.source_dir, speaker)):
|
|
if not file_name.endswith("wav"):
|
|
continue
|
|
if file_name.startswith("."):
|
|
continue
|
|
|
|
file_path = "/".join([args.source_dir, speaker, file_name])
|
|
|
|
if not pattern.match(file_name):
|
|
logger.warning("Detected non-ASCII file name: " + file_path)
|
|
|
|
if get_wav_duration(file_path) < 0.3:
|
|
logger.info("Skip too short audio: " + file_path)
|
|
continue
|
|
|
|
wavs.append(file_path)
|
|
|
|
shuffle(wavs)
|
|
train += wavs[2:]
|
|
val += wavs[:2]
|
|
|
|
shuffle(train)
|
|
shuffle(val)
|
|
|
|
logger.info("Writing " + args.train_list)
|
|
with open(args.train_list, "w") as f:
|
|
for fname in tqdm(train):
|
|
wavpath = fname
|
|
f.write(wavpath + "\n")
|
|
|
|
logger.info("Writing " + args.val_list)
|
|
with open(args.val_list, "w") as f:
|
|
for fname in tqdm(val):
|
|
wavpath = fname
|
|
f.write(wavpath + "\n")
|
|
|
|
|
|
d_config_template = du.load_config("configs_template/diffusion_template.yaml")
|
|
d_config_template["model"]["n_spk"] = spk_id
|
|
d_config_template["data"]["encoder"] = args.speech_encoder
|
|
d_config_template["spk"] = spk_dict
|
|
|
|
config_template["spk"] = spk_dict
|
|
config_template["model"]["n_speakers"] = spk_id
|
|
config_template["model"]["speech_encoder"] = args.speech_encoder
|
|
|
|
if args.speech_encoder == "vec768l12" or args.speech_encoder == "dphubert" or args.speech_encoder == "wavlmbase+":
|
|
config_template["model"]["ssl_dim"] = config_template["model"]["filter_channels"] = config_template["model"]["gin_channels"] = 768
|
|
d_config_template["data"]["encoder_out_channels"] = 768
|
|
elif args.speech_encoder == "vec256l9" or args.speech_encoder == 'hubertsoft':
|
|
config_template["model"]["ssl_dim"] = config_template["model"]["gin_channels"] = 256
|
|
d_config_template["data"]["encoder_out_channels"] = 256
|
|
elif args.speech_encoder == "whisper-ppg" or args.speech_encoder == 'cnhubertlarge':
|
|
config_template["model"]["ssl_dim"] = config_template["model"]["filter_channels"] = config_template["model"]["gin_channels"] = 1024
|
|
d_config_template["data"]["encoder_out_channels"] = 1024
|
|
elif args.speech_encoder == "whisper-ppg-large":
|
|
config_template["model"]["ssl_dim"] = config_template["model"]["filter_channels"] = config_template["model"]["gin_channels"] = 1280
|
|
d_config_template["data"]["encoder_out_channels"] = 1280
|
|
|
|
if args.vol_aug:
|
|
config_template["train"]["vol_aug"] = config_template["model"]["vol_embedding"] = True
|
|
|
|
if args.tiny:
|
|
config_template["model"]["filter_channels"] = 512
|
|
|
|
logger.info("Writing to configs/config.json")
|
|
with open("configs/config.json", "w") as f:
|
|
json.dump(config_template, f, indent=2)
|
|
logger.info("Writing to configs/diffusion.yaml")
|
|
du.save_config("configs/diffusion.yaml",d_config_template)
|