mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-01-07 03:17:31 +08:00
573 lines
20 KiB
Python
573 lines
20 KiB
Python
import argparse
|
||
import glob
|
||
import json
|
||
import logging
|
||
import os
|
||
import re
|
||
import subprocess
|
||
import sys
|
||
import traceback
|
||
from multiprocessing import cpu_count
|
||
|
||
import faiss
|
||
import librosa
|
||
import numpy as np
|
||
import torch
|
||
from scipy.io.wavfile import read
|
||
from sklearn.cluster import MiniBatchKMeans
|
||
from torch.nn import functional as F
|
||
|
||
MATPLOTLIB_FLAG = False
|
||
|
||
logging.basicConfig(stream=sys.stdout, level=logging.WARN)
|
||
logger = logging
|
||
|
||
f0_bin = 256
|
||
f0_max = 1100.0
|
||
f0_min = 50.0
|
||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||
|
||
def normalize_f0(f0, x_mask, uv, random_scale=True):
|
||
# calculate means based on x_mask
|
||
uv_sum = torch.sum(uv, dim=1, keepdim=True)
|
||
uv_sum[uv_sum == 0] = 9999
|
||
means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
|
||
|
||
if random_scale:
|
||
factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
|
||
else:
|
||
factor = torch.ones(f0.shape[0], 1).to(f0.device)
|
||
# normalize f0 based on means and factor
|
||
f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
|
||
if torch.isnan(f0_norm).any():
|
||
exit(0)
|
||
return f0_norm * x_mask
|
||
def plot_data_to_numpy(x, y):
|
||
global MATPLOTLIB_FLAG
|
||
if not MATPLOTLIB_FLAG:
|
||
import matplotlib
|
||
matplotlib.use("Agg")
|
||
MATPLOTLIB_FLAG = True
|
||
mpl_logger = logging.getLogger('matplotlib')
|
||
mpl_logger.setLevel(logging.WARNING)
|
||
import matplotlib.pylab as plt
|
||
import numpy as np
|
||
|
||
fig, ax = plt.subplots(figsize=(10, 2))
|
||
plt.plot(x)
|
||
plt.plot(y)
|
||
plt.tight_layout()
|
||
|
||
fig.canvas.draw()
|
||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
plt.close()
|
||
return data
|
||
|
||
|
||
def f0_to_coarse(f0):
|
||
f0_mel = 1127 * (1 + f0 / 700).log()
|
||
a = (f0_bin - 2) / (f0_mel_max - f0_mel_min)
|
||
b = f0_mel_min * a - 1.
|
||
f0_mel = torch.where(f0_mel > 0, f0_mel * a - b, f0_mel)
|
||
# torch.clip_(f0_mel, min=1., max=float(f0_bin - 1))
|
||
f0_coarse = torch.round(f0_mel).long()
|
||
f0_coarse = f0_coarse * (f0_coarse > 0)
|
||
f0_coarse = f0_coarse + ((f0_coarse < 1) * 1)
|
||
f0_coarse = f0_coarse * (f0_coarse < f0_bin)
|
||
f0_coarse = f0_coarse + ((f0_coarse >= f0_bin) * (f0_bin - 1))
|
||
return f0_coarse
|
||
|
||
def get_content(cmodel, y):
|
||
with torch.no_grad():
|
||
c = cmodel.extract_features(y.squeeze(1))[0]
|
||
c = c.transpose(1, 2)
|
||
return c
|
||
|
||
def get_f0_predictor(f0_predictor,hop_length,sampling_rate,**kargs):
|
||
if f0_predictor == "pm":
|
||
from modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
||
f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||
elif f0_predictor == "crepe":
|
||
from modules.F0Predictor.CrepeF0Predictor import CrepeF0Predictor
|
||
f0_predictor_object = CrepeF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,device=kargs["device"],threshold=kargs["threshold"])
|
||
elif f0_predictor == "harvest":
|
||
from modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
|
||
f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||
elif f0_predictor == "dio":
|
||
from modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
||
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
||
elif f0_predictor == "rmvpe":
|
||
from modules.F0Predictor.RMVPEF0Predictor import RMVPEF0Predictor
|
||
f0_predictor_object = RMVPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
|
||
elif f0_predictor == "fcpe":
|
||
from modules.F0Predictor.FCPEF0Predictor import FCPEF0Predictor
|
||
f0_predictor_object = FCPEF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate,dtype=torch.float32 ,device=kargs["device"],threshold=kargs["threshold"])
|
||
else:
|
||
raise Exception("Unknown f0 predictor")
|
||
return f0_predictor_object
|
||
|
||
def get_speech_encoder(speech_encoder,device=None,**kargs):
|
||
if speech_encoder == "vec768l12":
|
||
from vencoder.ContentVec768L12 import ContentVec768L12
|
||
speech_encoder_object = ContentVec768L12(device = device)
|
||
elif speech_encoder == "vec256l9":
|
||
from vencoder.ContentVec256L9 import ContentVec256L9
|
||
speech_encoder_object = ContentVec256L9(device = device)
|
||
elif speech_encoder == "vec256l9-onnx":
|
||
from vencoder.ContentVec256L9_Onnx import ContentVec256L9_Onnx
|
||
speech_encoder_object = ContentVec256L9_Onnx(device = device)
|
||
elif speech_encoder == "vec256l12-onnx":
|
||
from vencoder.ContentVec256L12_Onnx import ContentVec256L12_Onnx
|
||
speech_encoder_object = ContentVec256L12_Onnx(device = device)
|
||
elif speech_encoder == "vec768l9-onnx":
|
||
from vencoder.ContentVec768L9_Onnx import ContentVec768L9_Onnx
|
||
speech_encoder_object = ContentVec768L9_Onnx(device = device)
|
||
elif speech_encoder == "vec768l12-onnx":
|
||
from vencoder.ContentVec768L12_Onnx import ContentVec768L12_Onnx
|
||
speech_encoder_object = ContentVec768L12_Onnx(device = device)
|
||
elif speech_encoder == "hubertsoft-onnx":
|
||
from vencoder.HubertSoft_Onnx import HubertSoft_Onnx
|
||
speech_encoder_object = HubertSoft_Onnx(device = device)
|
||
elif speech_encoder == "hubertsoft":
|
||
from vencoder.HubertSoft import HubertSoft
|
||
speech_encoder_object = HubertSoft(device = device)
|
||
elif speech_encoder == "whisper-ppg":
|
||
from vencoder.WhisperPPG import WhisperPPG
|
||
speech_encoder_object = WhisperPPG(device = device)
|
||
elif speech_encoder == "cnhubertlarge":
|
||
from vencoder.CNHubertLarge import CNHubertLarge
|
||
speech_encoder_object = CNHubertLarge(device = device)
|
||
elif speech_encoder == "dphubert":
|
||
from vencoder.DPHubert import DPHubert
|
||
speech_encoder_object = DPHubert(device = device)
|
||
elif speech_encoder == "whisper-ppg-large":
|
||
from vencoder.WhisperPPGLarge import WhisperPPGLarge
|
||
speech_encoder_object = WhisperPPGLarge(device = device)
|
||
elif speech_encoder == "wavlmbase+":
|
||
from vencoder.WavLMBasePlus import WavLMBasePlus
|
||
speech_encoder_object = WavLMBasePlus(device = device)
|
||
else:
|
||
raise Exception("Unknown speech encoder")
|
||
return speech_encoder_object
|
||
|
||
def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
|
||
assert os.path.isfile(checkpoint_path)
|
||
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||
iteration = checkpoint_dict['iteration']
|
||
learning_rate = checkpoint_dict['learning_rate']
|
||
if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
|
||
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||
saved_state_dict = checkpoint_dict['model']
|
||
model = model.to(list(saved_state_dict.values())[0].dtype)
|
||
if hasattr(model, 'module'):
|
||
state_dict = model.module.state_dict()
|
||
else:
|
||
state_dict = model.state_dict()
|
||
new_state_dict = {}
|
||
for k, v in state_dict.items():
|
||
try:
|
||
# assert "dec" in k or "disc" in k
|
||
# print("load", k)
|
||
new_state_dict[k] = saved_state_dict[k]
|
||
assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
|
||
except Exception:
|
||
if "enc_q" not in k or "emb_g" not in k:
|
||
print("%s is not in the checkpoint,please check your checkpoint.If you're using pretrain model,just ignore this warning." % k)
|
||
logger.info("%s is not in the checkpoint" % k)
|
||
new_state_dict[k] = v
|
||
if hasattr(model, 'module'):
|
||
model.module.load_state_dict(new_state_dict)
|
||
else:
|
||
model.load_state_dict(new_state_dict)
|
||
print("load ")
|
||
logger.info("Loaded checkpoint '{}' (iteration {})".format(
|
||
checkpoint_path, iteration))
|
||
return model, optimizer, learning_rate, iteration
|
||
|
||
|
||
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
||
iteration, checkpoint_path))
|
||
if hasattr(model, 'module'):
|
||
state_dict = model.module.state_dict()
|
||
else:
|
||
state_dict = model.state_dict()
|
||
torch.save({'model': state_dict,
|
||
'iteration': iteration,
|
||
'optimizer': optimizer.state_dict(),
|
||
'learning_rate': learning_rate}, checkpoint_path)
|
||
|
||
def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
|
||
"""Freeing up space by deleting saved ckpts
|
||
|
||
Arguments:
|
||
path_to_models -- Path to the model directory
|
||
n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
|
||
sort_by_time -- True -> chronologically delete ckpts
|
||
False -> lexicographically delete ckpts
|
||
"""
|
||
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
|
||
def name_key(_f):
|
||
return int(re.compile("._(\\d+)\\.pth").match(_f).group(1))
|
||
def time_key(_f):
|
||
return os.path.getmtime(os.path.join(path_to_models, _f))
|
||
sort_key = time_key if sort_by_time else name_key
|
||
def x_sorted(_x):
|
||
return sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")], key=sort_key)
|
||
to_del = [os.path.join(path_to_models, fn) for fn in
|
||
(x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
|
||
def del_info(fn):
|
||
return logger.info(f".. Free up space by deleting ckpt {fn}")
|
||
def del_routine(x):
|
||
return [os.remove(x), del_info(x)]
|
||
[del_routine(fn) for fn in to_del]
|
||
|
||
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
||
for k, v in scalars.items():
|
||
writer.add_scalar(k, v, global_step)
|
||
for k, v in histograms.items():
|
||
writer.add_histogram(k, v, global_step)
|
||
for k, v in images.items():
|
||
writer.add_image(k, v, global_step, dataformats='HWC')
|
||
for k, v in audios.items():
|
||
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||
|
||
|
||
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||
f_list = glob.glob(os.path.join(dir_path, regex))
|
||
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||
x = f_list[-1]
|
||
print(x)
|
||
return x
|
||
|
||
|
||
def plot_spectrogram_to_numpy(spectrogram):
|
||
global MATPLOTLIB_FLAG
|
||
if not MATPLOTLIB_FLAG:
|
||
import matplotlib
|
||
matplotlib.use("Agg")
|
||
MATPLOTLIB_FLAG = True
|
||
mpl_logger = logging.getLogger('matplotlib')
|
||
mpl_logger.setLevel(logging.WARNING)
|
||
import matplotlib.pylab as plt
|
||
import numpy as np
|
||
|
||
fig, ax = plt.subplots(figsize=(10,2))
|
||
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
||
interpolation='none')
|
||
plt.colorbar(im, ax=ax)
|
||
plt.xlabel("Frames")
|
||
plt.ylabel("Channels")
|
||
plt.tight_layout()
|
||
|
||
fig.canvas.draw()
|
||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
plt.close()
|
||
return data
|
||
|
||
|
||
def plot_alignment_to_numpy(alignment, info=None):
|
||
global MATPLOTLIB_FLAG
|
||
if not MATPLOTLIB_FLAG:
|
||
import matplotlib
|
||
matplotlib.use("Agg")
|
||
MATPLOTLIB_FLAG = True
|
||
mpl_logger = logging.getLogger('matplotlib')
|
||
mpl_logger.setLevel(logging.WARNING)
|
||
import matplotlib.pylab as plt
|
||
import numpy as np
|
||
|
||
fig, ax = plt.subplots(figsize=(6, 4))
|
||
im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
|
||
interpolation='none')
|
||
fig.colorbar(im, ax=ax)
|
||
xlabel = 'Decoder timestep'
|
||
if info is not None:
|
||
xlabel += '\n\n' + info
|
||
plt.xlabel(xlabel)
|
||
plt.ylabel('Encoder timestep')
|
||
plt.tight_layout()
|
||
|
||
fig.canvas.draw()
|
||
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
|
||
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
||
plt.close()
|
||
return data
|
||
|
||
|
||
def load_wav_to_torch(full_path):
|
||
sampling_rate, data = read(full_path)
|
||
return torch.FloatTensor(data.astype(np.float32)), sampling_rate
|
||
|
||
|
||
def load_filepaths_and_text(filename, split="|"):
|
||
with open(filename, encoding='utf-8') as f:
|
||
filepaths_and_text = [line.strip().split(split) for line in f]
|
||
return filepaths_and_text
|
||
|
||
|
||
def get_hparams(init=True):
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('-c', '--config', type=str, default="./configs/config.json",
|
||
help='JSON file for configuration')
|
||
parser.add_argument('-m', '--model', type=str, required=True,
|
||
help='Model name')
|
||
|
||
args = parser.parse_args()
|
||
model_dir = os.path.join("./logs", args.model)
|
||
|
||
if not os.path.exists(model_dir):
|
||
os.makedirs(model_dir)
|
||
|
||
config_path = args.config
|
||
config_save_path = os.path.join(model_dir, "config.json")
|
||
if init:
|
||
with open(config_path, "r") as f:
|
||
data = f.read()
|
||
with open(config_save_path, "w") as f:
|
||
f.write(data)
|
||
else:
|
||
with open(config_save_path, "r") as f:
|
||
data = f.read()
|
||
config = json.loads(data)
|
||
|
||
hparams = HParams(**config)
|
||
hparams.model_dir = model_dir
|
||
return hparams
|
||
|
||
|
||
def get_hparams_from_dir(model_dir):
|
||
config_save_path = os.path.join(model_dir, "config.json")
|
||
with open(config_save_path, "r") as f:
|
||
data = f.read()
|
||
config = json.loads(data)
|
||
|
||
hparams =HParams(**config)
|
||
hparams.model_dir = model_dir
|
||
return hparams
|
||
|
||
|
||
def get_hparams_from_file(config_path, infer_mode = False):
|
||
with open(config_path, "r") as f:
|
||
data = f.read()
|
||
config = json.loads(data)
|
||
hparams =HParams(**config) if not infer_mode else InferHParams(**config)
|
||
return hparams
|
||
|
||
|
||
def check_git_hash(model_dir):
|
||
source_dir = os.path.dirname(os.path.realpath(__file__))
|
||
if not os.path.exists(os.path.join(source_dir, ".git")):
|
||
logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
|
||
source_dir
|
||
))
|
||
return
|
||
|
||
cur_hash = subprocess.getoutput("git rev-parse HEAD")
|
||
|
||
path = os.path.join(model_dir, "githash")
|
||
if os.path.exists(path):
|
||
saved_hash = open(path).read()
|
||
if saved_hash != cur_hash:
|
||
logger.warn("git hash values are different. {}(saved) != {}(current)".format(
|
||
saved_hash[:8], cur_hash[:8]))
|
||
else:
|
||
open(path, "w").write(cur_hash)
|
||
|
||
|
||
def get_logger(model_dir, filename="train.log"):
|
||
global logger
|
||
logger = logging.getLogger(os.path.basename(model_dir))
|
||
logger.setLevel(logging.DEBUG)
|
||
|
||
formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
|
||
if not os.path.exists(model_dir):
|
||
os.makedirs(model_dir)
|
||
h = logging.FileHandler(os.path.join(model_dir, filename))
|
||
h.setLevel(logging.DEBUG)
|
||
h.setFormatter(formatter)
|
||
logger.addHandler(h)
|
||
return logger
|
||
|
||
|
||
def repeat_expand_2d(content, target_len, mode = 'left'):
|
||
# content : [h, t]
|
||
return repeat_expand_2d_left(content, target_len) if mode == 'left' else repeat_expand_2d_other(content, target_len, mode)
|
||
|
||
|
||
|
||
def repeat_expand_2d_left(content, target_len):
|
||
# content : [h, t]
|
||
|
||
src_len = content.shape[-1]
|
||
target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
|
||
temp = torch.arange(src_len+1) * target_len / src_len
|
||
current_pos = 0
|
||
for i in range(target_len):
|
||
if i < temp[current_pos+1]:
|
||
target[:, i] = content[:, current_pos]
|
||
else:
|
||
current_pos += 1
|
||
target[:, i] = content[:, current_pos]
|
||
|
||
return target
|
||
|
||
|
||
# mode : 'nearest'| 'linear'| 'bilinear'| 'bicubic'| 'trilinear'| 'area'
|
||
def repeat_expand_2d_other(content, target_len, mode = 'nearest'):
|
||
# content : [h, t]
|
||
content = content[None,:,:]
|
||
target = F.interpolate(content,size=target_len,mode=mode)[0]
|
||
return target
|
||
|
||
|
||
def mix_model(model_paths,mix_rate,mode):
|
||
mix_rate = torch.FloatTensor(mix_rate)/100
|
||
model_tem = torch.load(model_paths[0])
|
||
models = [torch.load(path)["model"] for path in model_paths]
|
||
if mode == 0:
|
||
mix_rate = F.softmax(mix_rate,dim=0)
|
||
for k in model_tem["model"].keys():
|
||
model_tem["model"][k] = torch.zeros_like(model_tem["model"][k])
|
||
for i,model in enumerate(models):
|
||
model_tem["model"][k] += model[k]*mix_rate[i]
|
||
torch.save(model_tem,os.path.join(os.path.curdir,"output.pth"))
|
||
return os.path.join(os.path.curdir,"output.pth")
|
||
|
||
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比 from RVC
|
||
# print(data1.max(),data2.max())
|
||
rms1 = librosa.feature.rms(
|
||
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
||
) # 每半秒一个点
|
||
rms2 = librosa.feature.rms(y=data2.detach().cpu().numpy(), frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
||
rms1 = torch.from_numpy(rms1).to(data2.device)
|
||
rms1 = F.interpolate(
|
||
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
||
).squeeze()
|
||
rms2 = torch.from_numpy(rms2).to(data2.device)
|
||
rms2 = F.interpolate(
|
||
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
||
).squeeze()
|
||
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
||
data2 *= (
|
||
torch.pow(rms1, torch.tensor(1 - rate))
|
||
* torch.pow(rms2, torch.tensor(rate - 1))
|
||
)
|
||
return data2
|
||
|
||
def train_index(spk_name,root_dir = "dataset/44k/"): #from: RVC https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI
|
||
n_cpu = cpu_count()
|
||
print("The feature index is constructing.")
|
||
exp_dir = os.path.join(root_dir,spk_name)
|
||
listdir_res = []
|
||
for file in os.listdir(exp_dir):
|
||
if ".wav.soft.pt" in file:
|
||
listdir_res.append(os.path.join(exp_dir,file))
|
||
if len(listdir_res) == 0:
|
||
raise Exception("You need to run preprocess_hubert_f0.py!")
|
||
npys = []
|
||
for name in sorted(listdir_res):
|
||
phone = torch.load(name)[0].transpose(-1,-2).numpy()
|
||
npys.append(phone)
|
||
big_npy = np.concatenate(npys, 0)
|
||
big_npy_idx = np.arange(big_npy.shape[0])
|
||
np.random.shuffle(big_npy_idx)
|
||
big_npy = big_npy[big_npy_idx]
|
||
if big_npy.shape[0] > 2e5:
|
||
# if(1):
|
||
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
|
||
print(info)
|
||
try:
|
||
big_npy = (
|
||
MiniBatchKMeans(
|
||
n_clusters=10000,
|
||
verbose=True,
|
||
batch_size=256 * n_cpu,
|
||
compute_labels=False,
|
||
init="random",
|
||
)
|
||
.fit(big_npy)
|
||
.cluster_centers_
|
||
)
|
||
except Exception:
|
||
info = traceback.format_exc()
|
||
print(info)
|
||
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
||
index = faiss.index_factory(big_npy.shape[1] , "IVF%s,Flat" % n_ivf)
|
||
index_ivf = faiss.extract_index_ivf(index) #
|
||
index_ivf.nprobe = 1
|
||
index.train(big_npy)
|
||
batch_size_add = 8192
|
||
for i in range(0, big_npy.shape[0], batch_size_add):
|
||
index.add(big_npy[i : i + batch_size_add])
|
||
# faiss.write_index(
|
||
# index,
|
||
# f"added_{spk_name}.index"
|
||
# )
|
||
print("Successfully build index")
|
||
return index
|
||
|
||
|
||
class HParams():
|
||
def __init__(self, **kwargs):
|
||
for k, v in kwargs.items():
|
||
if type(v) == dict:
|
||
v = HParams(**v)
|
||
self[k] = v
|
||
|
||
def keys(self):
|
||
return self.__dict__.keys()
|
||
|
||
def items(self):
|
||
return self.__dict__.items()
|
||
|
||
def values(self):
|
||
return self.__dict__.values()
|
||
|
||
def __len__(self):
|
||
return len(self.__dict__)
|
||
|
||
def __getitem__(self, key):
|
||
return getattr(self, key)
|
||
|
||
def __setitem__(self, key, value):
|
||
return setattr(self, key, value)
|
||
|
||
def __contains__(self, key):
|
||
return key in self.__dict__
|
||
|
||
def __repr__(self):
|
||
return self.__dict__.__repr__()
|
||
|
||
def get(self,index):
|
||
return self.__dict__.get(index)
|
||
|
||
|
||
class InferHParams(HParams):
|
||
def __init__(self, **kwargs):
|
||
for k, v in kwargs.items():
|
||
if type(v) == dict:
|
||
v = InferHParams(**v)
|
||
self[k] = v
|
||
|
||
def __getattr__(self,index):
|
||
return self.get(index)
|
||
|
||
|
||
class Volume_Extractor:
|
||
def __init__(self, hop_size = 512):
|
||
self.hop_size = hop_size
|
||
|
||
def extract(self, audio): # audio: 2d tensor array
|
||
if not isinstance(audio,torch.Tensor):
|
||
audio = torch.Tensor(audio)
|
||
n_frames = int(audio.size(-1) // self.hop_size)
|
||
audio2 = audio ** 2
|
||
audio2 = torch.nn.functional.pad(audio2, (int(self.hop_size // 2), int((self.hop_size + 1) // 2)), mode = 'reflect')
|
||
volume = torch.nn.functional.unfold(audio2[:,None,None,:],(1,self.hop_size),stride=self.hop_size)[:,:,:n_frames].mean(dim=1)[0]
|
||
volume = torch.sqrt(volume)
|
||
return volume
|