mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-01-08 11:57:43 +08:00
34 lines
1.1 KiB
Python
34 lines
1.1 KiB
Python
import onnxruntime
|
|
import torch
|
|
|
|
from vencoder.encoder import SpeechEncoder
|
|
|
|
|
|
class ContentVec256L12_Onnx(SpeechEncoder):
|
|
def __init__(self, vec_path="pretrain/vec-256-layer-12.onnx", device=None):
|
|
super().__init__()
|
|
print("load model(s) from {}".format(vec_path))
|
|
self.hidden_dim = 256
|
|
if device is None:
|
|
self.dev = torch.device("cpu")
|
|
else:
|
|
self.dev = torch.device(device)
|
|
|
|
if device == 'cuda' or device == torch.device("cuda"):
|
|
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
|
else:
|
|
providers = ['CPUExecutionProvider']
|
|
|
|
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
|
|
|
|
def encoder(self, wav):
|
|
feats = wav
|
|
if feats.dim() == 2: # double channels
|
|
feats = feats.mean(-1)
|
|
assert feats.dim() == 1, feats.dim()
|
|
feats = feats.view(1, -1)
|
|
feats = feats.unsqueeze(0).cpu().detach().numpy()
|
|
onnx_input = {self.model.get_inputs()[0].name: feats}
|
|
logits = self.model.run(None, onnx_input)
|
|
return torch.tensor(logits[0]).transpose(1, 2).to(self.dev)
|