mirror of
https://github.com/svc-develop-team/so-vits-svc.git
synced 2025-01-09 04:27:31 +08:00
1919391b31
4.1 latest
431 lines
24 KiB
Python
431 lines
24 KiB
Python
import glob
|
||
import json
|
||
import logging
|
||
import os
|
||
import re
|
||
import subprocess
|
||
import sys
|
||
import time
|
||
import traceback
|
||
from itertools import chain
|
||
from pathlib import Path
|
||
|
||
# os.system("wget -P cvec/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
|
||
import gradio as gr
|
||
import librosa
|
||
import numpy as np
|
||
import soundfile
|
||
import torch
|
||
|
||
from compress_model import removeOptimizer
|
||
from edgetts.tts_voices import SUPPORTED_LANGUAGES
|
||
from inference.infer_tool import Svc
|
||
from utils import mix_model
|
||
|
||
logging.getLogger('numba').setLevel(logging.WARNING)
|
||
logging.getLogger('markdown_it').setLevel(logging.WARNING)
|
||
logging.getLogger('urllib3').setLevel(logging.WARNING)
|
||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||
logging.getLogger('multipart').setLevel(logging.WARNING)
|
||
|
||
model = None
|
||
spk = None
|
||
debug = False
|
||
|
||
local_model_root = './trained'
|
||
|
||
cuda = {}
|
||
if torch.cuda.is_available():
|
||
for i in range(torch.cuda.device_count()):
|
||
device_name = torch.cuda.get_device_properties(i).name
|
||
cuda[f"CUDA:{i} {device_name}"] = f"cuda:{i}"
|
||
|
||
def upload_mix_append_file(files,sfiles):
|
||
try:
|
||
if(sfiles is None):
|
||
file_paths = [file.name for file in files]
|
||
else:
|
||
file_paths = [file.name for file in chain(files,sfiles)]
|
||
p = {file:100 for file in file_paths}
|
||
return file_paths,mix_model_output1.update(value=json.dumps(p,indent=2))
|
||
except Exception as e:
|
||
if debug:
|
||
traceback.print_exc()
|
||
raise gr.Error(e)
|
||
|
||
def mix_submit_click(js,mode):
|
||
try:
|
||
assert js.lstrip()!=""
|
||
modes = {"凸组合":0, "线性组合":1}
|
||
mode = modes[mode]
|
||
data = json.loads(js)
|
||
data = list(data.items())
|
||
model_path,mix_rate = zip(*data)
|
||
path = mix_model(model_path,mix_rate,mode)
|
||
return f"成功,文件被保存在了{path}"
|
||
except Exception as e:
|
||
if debug:
|
||
traceback.print_exc()
|
||
raise gr.Error(e)
|
||
|
||
def updata_mix_info(files):
|
||
try:
|
||
if files is None :
|
||
return mix_model_output1.update(value="")
|
||
p = {file.name:100 for file in files}
|
||
return mix_model_output1.update(value=json.dumps(p,indent=2))
|
||
except Exception as e:
|
||
if debug:
|
||
traceback.print_exc()
|
||
raise gr.Error(e)
|
||
|
||
def modelAnalysis(model_path,config_path,cluster_model_path,device,enhance,diff_model_path,diff_config_path,only_diffusion,use_spk_mix,local_model_enabled,local_model_selection):
|
||
global model
|
||
try:
|
||
device = cuda[device] if "CUDA" in device else device
|
||
cluster_filepath = os.path.split(cluster_model_path.name) if cluster_model_path is not None else "no_cluster"
|
||
# get model and config path
|
||
if (local_model_enabled):
|
||
# local path
|
||
model_path = glob.glob(os.path.join(local_model_selection, '*.pth'))[0]
|
||
config_path = glob.glob(os.path.join(local_model_selection, '*.json'))[0]
|
||
else:
|
||
# upload from webpage
|
||
model_path = model_path.name
|
||
config_path = config_path.name
|
||
fr = ".pkl" in cluster_filepath[1]
|
||
model = Svc(model_path,
|
||
config_path,
|
||
device=device if device != "Auto" else None,
|
||
cluster_model_path = cluster_model_path.name if cluster_model_path is not None else "",
|
||
nsf_hifigan_enhance=enhance,
|
||
diffusion_model_path = diff_model_path.name if diff_model_path is not None else "",
|
||
diffusion_config_path = diff_config_path.name if diff_config_path is not None else "",
|
||
shallow_diffusion = True if diff_model_path is not None else False,
|
||
only_diffusion = only_diffusion,
|
||
spk_mix_enable = use_spk_mix,
|
||
feature_retrieval = fr
|
||
)
|
||
spks = list(model.spk2id.keys())
|
||
device_name = torch.cuda.get_device_properties(model.dev).name if "cuda" in str(model.dev) else str(model.dev)
|
||
msg = f"成功加载模型到设备{device_name}上\n"
|
||
if cluster_model_path is None:
|
||
msg += "未加载聚类模型或特征检索模型\n"
|
||
elif fr:
|
||
msg += f"特征检索模型{cluster_filepath[1]}加载成功\n"
|
||
else:
|
||
msg += f"聚类模型{cluster_filepath[1]}加载成功\n"
|
||
if diff_model_path is None:
|
||
msg += "未加载扩散模型\n"
|
||
else:
|
||
msg += f"扩散模型{diff_model_path.name}加载成功\n"
|
||
msg += "当前模型的可用音色:\n"
|
||
for i in spks:
|
||
msg += i + " "
|
||
return sid.update(choices = spks,value=spks[0]), msg
|
||
except Exception as e:
|
||
if debug:
|
||
traceback.print_exc()
|
||
raise gr.Error(e)
|
||
|
||
|
||
def modelUnload():
|
||
global model
|
||
if model is None:
|
||
return sid.update(choices = [],value=""),"没有模型需要卸载!"
|
||
else:
|
||
model.unload_model()
|
||
model = None
|
||
torch.cuda.empty_cache()
|
||
return sid.update(choices = [],value=""),"模型卸载完毕!"
|
||
|
||
def vc_infer(output_format, sid, audio_path, truncated_basename, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold, k_step, use_spk_mix, second_encoding, loudness_envelope_adjustment):
|
||
global model
|
||
_audio = model.slice_inference(
|
||
audio_path,
|
||
sid,
|
||
vc_transform,
|
||
slice_db,
|
||
cluster_ratio,
|
||
auto_f0,
|
||
noise_scale,
|
||
pad_seconds,
|
||
cl_num,
|
||
lg_num,
|
||
lgr_num,
|
||
f0_predictor,
|
||
enhancer_adaptive_key,
|
||
cr_threshold,
|
||
k_step,
|
||
use_spk_mix,
|
||
second_encoding,
|
||
loudness_envelope_adjustment
|
||
)
|
||
model.clear_empty()
|
||
#构建保存文件的路径,并保存到results文件夹内
|
||
str(int(time.time()))
|
||
if not os.path.exists("results"):
|
||
os.makedirs("results")
|
||
key = "auto" if auto_f0 else f"{int(vc_transform)}key"
|
||
cluster = "_" if cluster_ratio == 0 else f"_{cluster_ratio}_"
|
||
isdiffusion = "sovits"
|
||
if model.shallow_diffusion:
|
||
isdiffusion = "sovdiff"
|
||
|
||
if model.only_diffusion:
|
||
isdiffusion = "diff"
|
||
|
||
output_file_name = 'result_'+truncated_basename+f'_{sid}_{key}{cluster}{isdiffusion}.{output_format}'
|
||
output_file = os.path.join("results", output_file_name)
|
||
soundfile.write(output_file, _audio, model.target_sample, format=output_format)
|
||
return output_file
|
||
|
||
def vc_fn(sid, input_audio, output_format, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment):
|
||
global model
|
||
try:
|
||
if input_audio is None:
|
||
return "You need to upload an audio", None
|
||
if model is None:
|
||
return "You need to upload an model", None
|
||
if getattr(model, 'cluster_model', None) is None and model.feature_retrieval is False:
|
||
if cluster_ratio != 0:
|
||
return "You need to upload an cluster model or feature retrieval model before assigning cluster ratio!", None
|
||
#print(input_audio)
|
||
audio, sampling_rate = soundfile.read(input_audio)
|
||
#print(audio.shape,sampling_rate)
|
||
if np.issubdtype(audio.dtype, np.integer):
|
||
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
||
#print(audio.dtype)
|
||
if len(audio.shape) > 1:
|
||
audio = librosa.to_mono(audio.transpose(1, 0))
|
||
# 未知原因Gradio上传的filepath会有一个奇怪的固定后缀,这里去掉
|
||
truncated_basename = Path(input_audio).stem[:-6]
|
||
processed_audio = os.path.join("raw", f"{truncated_basename}.wav")
|
||
soundfile.write(processed_audio, audio, sampling_rate, format="wav")
|
||
output_file = vc_infer(output_format, sid, processed_audio, truncated_basename, vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold, k_step, use_spk_mix, second_encoding, loudness_envelope_adjustment)
|
||
|
||
return "Success", output_file
|
||
except Exception as e:
|
||
if debug:
|
||
traceback.print_exc()
|
||
raise gr.Error(e)
|
||
|
||
def text_clear(text):
|
||
return re.sub(r"[\n\,\(\) ]", "", text)
|
||
|
||
def vc_fn2(_text, _lang, _gender, _rate, _volume, sid, output_format, vc_transform, auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold, k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment):
|
||
global model
|
||
try:
|
||
if model is None:
|
||
return "You need to upload an model", None
|
||
if getattr(model, 'cluster_model', None) is None and model.feature_retrieval is False:
|
||
if cluster_ratio != 0:
|
||
return "You need to upload an cluster model or feature retrieval model before assigning cluster ratio!", None
|
||
_rate = f"+{int(_rate*100)}%" if _rate >= 0 else f"{int(_rate*100)}%"
|
||
_volume = f"+{int(_volume*100)}%" if _volume >= 0 else f"{int(_volume*100)}%"
|
||
if _lang == "Auto":
|
||
_gender = "Male" if _gender == "男" else "Female"
|
||
subprocess.run([sys.executable, "edgetts/tts.py", _text, _lang, _rate, _volume, _gender])
|
||
else:
|
||
subprocess.run([sys.executable, "edgetts/tts.py", _text, _lang, _rate, _volume])
|
||
target_sr = 44100
|
||
y, sr = librosa.load("tts.wav")
|
||
resampled_y = librosa.resample(y, orig_sr=sr, target_sr=target_sr)
|
||
soundfile.write("tts.wav", resampled_y, target_sr, subtype = "PCM_16")
|
||
input_audio = "tts.wav"
|
||
#audio, _ = soundfile.read(input_audio)
|
||
output_file_path = vc_infer(output_format, sid, input_audio, "tts", vc_transform, auto_f0, cluster_ratio, slice_db, noise_scale, pad_seconds, cl_num, lg_num, lgr_num, f0_predictor, enhancer_adaptive_key, cr_threshold, k_step, use_spk_mix, second_encoding, loudness_envelope_adjustment)
|
||
os.remove("tts.wav")
|
||
return "Success", output_file_path
|
||
except Exception as e:
|
||
if debug: traceback.print_exc() # noqa: E701
|
||
raise gr.Error(e)
|
||
|
||
def model_compression(_model):
|
||
if _model == "":
|
||
return "请先选择要压缩的模型"
|
||
else:
|
||
model_path = os.path.split(_model.name)
|
||
filename, extension = os.path.splitext(model_path[1])
|
||
output_model_name = f"{filename}_compressed{extension}"
|
||
output_path = os.path.join(os.getcwd(), output_model_name)
|
||
removeOptimizer(_model.name, output_path)
|
||
return f"模型已成功被保存在了{output_path}"
|
||
|
||
def scan_local_models():
|
||
res = []
|
||
candidates = glob.glob(os.path.join(local_model_root, '**', '*.json'), recursive=True)
|
||
candidates = set([os.path.dirname(c) for c in candidates])
|
||
for candidate in candidates:
|
||
jsons = glob.glob(os.path.join(candidate, '*.json'))
|
||
pths = glob.glob(os.path.join(candidate, '*.pth'))
|
||
if (len(jsons) == 1 and len(pths) == 1):
|
||
# must contain exactly one json and one pth file
|
||
res.append(candidate)
|
||
return res
|
||
|
||
def local_model_refresh_fn():
|
||
choices = scan_local_models()
|
||
return gr.Dropdown.update(choices=choices)
|
||
|
||
def debug_change():
|
||
global debug
|
||
debug = debug_button.value
|
||
|
||
with gr.Blocks(
|
||
theme=gr.themes.Base(
|
||
primary_hue = gr.themes.colors.green,
|
||
font=["Source Sans Pro", "Arial", "sans-serif"],
|
||
font_mono=['JetBrains mono', "Consolas", 'Courier New']
|
||
),
|
||
) as app:
|
||
with gr.Tabs():
|
||
with gr.TabItem("推理"):
|
||
gr.Markdown(value="""
|
||
So-vits-svc 4.0 推理 webui
|
||
""")
|
||
with gr.Row(variant="panel"):
|
||
with gr.Column():
|
||
gr.Markdown(value="""
|
||
<font size=2> 模型设置</font>
|
||
""")
|
||
with gr.Tabs():
|
||
# invisible checkbox that tracks tab status
|
||
local_model_enabled = gr.Checkbox(value=False, visible=False)
|
||
with gr.TabItem('上传') as local_model_tab_upload:
|
||
with gr.Row():
|
||
model_path = gr.File(label="选择模型文件")
|
||
config_path = gr.File(label="选择配置文件")
|
||
with gr.TabItem('本地') as local_model_tab_local:
|
||
gr.Markdown(f'模型应当放置于{local_model_root}文件夹下')
|
||
local_model_refresh_btn = gr.Button('刷新本地模型列表')
|
||
local_model_selection = gr.Dropdown(label='选择模型文件夹', choices=[], interactive=True)
|
||
with gr.Row():
|
||
diff_model_path = gr.File(label="选择扩散模型文件")
|
||
diff_config_path = gr.File(label="选择扩散模型配置文件")
|
||
cluster_model_path = gr.File(label="选择聚类模型或特征检索文件(没有可以不选)")
|
||
device = gr.Dropdown(label="推理设备,默认为自动选择CPU和GPU", choices=["Auto",*cuda.keys(),"cpu"], value="Auto")
|
||
enhance = gr.Checkbox(label="是否使用NSF_HIFIGAN增强,该选项对部分训练集少的模型有一定的音质增强效果,但是对训练好的模型有反面效果,默认关闭", value=False)
|
||
only_diffusion = gr.Checkbox(label="是否使用全扩散推理,开启后将不使用So-VITS模型,仅使用扩散模型进行完整扩散推理,默认关闭", value=False)
|
||
with gr.Column():
|
||
gr.Markdown(value="""
|
||
<font size=3>左侧文件全部选择完毕后(全部文件模块显示download),点击“加载模型”进行解析:</font>
|
||
""")
|
||
model_load_button = gr.Button(value="加载模型", variant="primary")
|
||
model_unload_button = gr.Button(value="卸载模型", variant="primary")
|
||
sid = gr.Dropdown(label="音色(说话人)")
|
||
sid_output = gr.Textbox(label="Output Message")
|
||
|
||
|
||
with gr.Row(variant="panel"):
|
||
with gr.Column():
|
||
gr.Markdown(value="""
|
||
<font size=2> 推理设置</font>
|
||
""")
|
||
auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声勾选此项会究极跑调)", value=False)
|
||
f0_predictor = gr.Dropdown(label="选择F0预测器,可选择crepe,pm,dio,harvest,rmvpe,默认为pm(注意:crepe为原F0使用均值滤波器)", choices=["pm","dio","harvest","crepe","rmvpe"], value="pm")
|
||
vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
|
||
cluster_ratio = gr.Number(label="聚类模型/特征检索混合比例,0-1之间,0即不启用聚类/特征检索。使用聚类/特征检索能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
|
||
slice_db = gr.Number(label="切片阈值", value=-40)
|
||
output_format = gr.Radio(label="音频输出格式", choices=["wav", "flac", "mp3"], value = "wav")
|
||
noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
|
||
k_step = gr.Slider(label="浅扩散步数,只有使用了扩散模型才有效,步数越大越接近扩散模型的结果", value=100, minimum = 1, maximum = 1000)
|
||
with gr.Column():
|
||
pad_seconds = gr.Number(label="推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现", value=0.5)
|
||
cl_num = gr.Number(label="音频自动切片,0为不切片,单位为秒(s)", value=0)
|
||
lg_num = gr.Number(label="两端音频切片的交叉淡入长度,如果自动切片后出现人声不连贯可调整该数值,如果连贯建议采用默认值0,注意,该设置会影响推理速度,单位为秒/s", value=0)
|
||
lgr_num = gr.Number(label="自动音频切片后,需要舍弃每段切片的头尾。该参数设置交叉长度保留的比例,范围0-1,左开右闭", value=0.75)
|
||
enhancer_adaptive_key = gr.Number(label="使增强器适应更高的音域(单位为半音数)|默认为0", value=0)
|
||
cr_threshold = gr.Number(label="F0过滤阈值,只有启动crepe时有效. 数值范围从0-1. 降低该值可减少跑调概率,但会增加哑音", value=0.05)
|
||
loudness_envelope_adjustment = gr.Number(label="输入源响度包络替换输出响度包络融合比例,越靠近1越使用输出响度包络", value = 0)
|
||
second_encoding = gr.Checkbox(label = "二次编码,浅扩散前会对原始音频进行二次编码,玄学选项,效果时好时差,默认关闭", value=False)
|
||
use_spk_mix = gr.Checkbox(label = "动态声线融合", value = False, interactive = False)
|
||
with gr.Tabs():
|
||
with gr.TabItem("音频转音频"):
|
||
vc_input3 = gr.Audio(label="选择音频", type="filepath")
|
||
vc_submit = gr.Button("音频转换", variant="primary")
|
||
with gr.TabItem("文字转音频"):
|
||
text2tts=gr.Textbox(label="在此输入要转译的文字。注意,使用该功能建议打开F0预测,不然会很怪")
|
||
with gr.Row():
|
||
tts_gender = gr.Radio(label = "说话人性别", choices = ["男","女"], value = "男")
|
||
tts_lang = gr.Dropdown(label = "选择语言,Auto为根据输入文字自动识别", choices=SUPPORTED_LANGUAGES, value = "Auto")
|
||
tts_rate = gr.Slider(label = "TTS语音变速(倍速相对值)", minimum = -1, maximum = 3, value = 0, step = 0.1)
|
||
tts_volume = gr.Slider(label = "TTS语音音量(相对值)", minimum = -1, maximum = 1.5, value = 0, step = 0.1)
|
||
vc_submit2 = gr.Button("文字转换", variant="primary")
|
||
with gr.Row():
|
||
with gr.Column():
|
||
vc_output1 = gr.Textbox(label="Output Message")
|
||
with gr.Column():
|
||
vc_output2 = gr.Audio(label="Output Audio", interactive=False)
|
||
|
||
with gr.TabItem("小工具/实验室特性"):
|
||
gr.Markdown(value="""
|
||
<font size=2> So-vits-svc 4.0 小工具/实验室特性</font>
|
||
""")
|
||
with gr.Tabs():
|
||
with gr.TabItem("静态声线融合"):
|
||
gr.Markdown(value="""
|
||
<font size=2> 介绍:该功能可以将多个声音模型合成为一个声音模型(多个模型参数的凸组合或线性组合),从而制造出现实中不存在的声线
|
||
注意:
|
||
1.该功能仅支持单说话人的模型
|
||
2.如果强行使用多说话人模型,需要保证多个模型的说话人数量相同,这样可以混合同一个SpaekerID下的声音
|
||
3.保证所有待混合模型的config.json中的model字段是相同的
|
||
4.输出的混合模型可以使用待合成模型的任意一个config.json,但聚类模型将不能使用
|
||
5.批量上传模型的时候最好把模型放到一个文件夹选中后一起上传
|
||
6.混合比例调整建议大小在0-100之间,也可以调为其他数字,但在线性组合模式下会出现未知的效果
|
||
7.混合完毕后,文件将会保存在项目根目录中,文件名为output.pth
|
||
8.凸组合模式会将混合比例执行Softmax使混合比例相加为1,而线性组合模式不会
|
||
</font>
|
||
""")
|
||
mix_model_path = gr.Files(label="选择需要混合模型文件")
|
||
mix_model_upload_button = gr.UploadButton("选择/追加需要混合模型文件", file_count="multiple")
|
||
mix_model_output1 = gr.Textbox(
|
||
label="混合比例调整,单位/%",
|
||
interactive = True
|
||
)
|
||
mix_mode = gr.Radio(choices=["凸组合", "线性组合"], label="融合模式",value="凸组合",interactive = True)
|
||
mix_submit = gr.Button("声线融合启动", variant="primary")
|
||
mix_model_output2 = gr.Textbox(
|
||
label="Output Message"
|
||
)
|
||
mix_model_path.change(updata_mix_info,[mix_model_path],[mix_model_output1])
|
||
mix_model_upload_button.upload(upload_mix_append_file, [mix_model_upload_button,mix_model_path], [mix_model_path,mix_model_output1])
|
||
mix_submit.click(mix_submit_click, [mix_model_output1,mix_mode], [mix_model_output2])
|
||
|
||
with gr.TabItem("模型压缩工具"):
|
||
gr.Markdown(value="""
|
||
该工具可以实现对模型的体积压缩,在**不影响模型推理功能**的情况下,将原本约600M的So-VITS模型压缩至约200M, 大大减少了硬盘的压力。
|
||
**注意:压缩后的模型将无法继续训练,请在确认封炉后再压缩。**
|
||
""")
|
||
model_to_compress = gr.File(label="模型上传")
|
||
compress_model_btn = gr.Button("压缩模型", variant="primary")
|
||
compress_model_output = gr.Textbox(label="输出信息", value="")
|
||
|
||
compress_model_btn.click(model_compression, [model_to_compress], [compress_model_output])
|
||
|
||
|
||
with gr.Tabs():
|
||
with gr.Row(variant="panel"):
|
||
with gr.Column():
|
||
gr.Markdown(value="""
|
||
<font size=2> WebUI设置</font>
|
||
""")
|
||
debug_button = gr.Checkbox(label="Debug模式,如果向社区反馈BUG需要打开,打开后控制台可以显示具体错误提示", value=debug)
|
||
# refresh local model list
|
||
local_model_refresh_btn.click(local_model_refresh_fn, outputs=local_model_selection)
|
||
# set local enabled/disabled on tab switch
|
||
local_model_tab_upload.select(lambda: False, outputs=local_model_enabled)
|
||
local_model_tab_local.select(lambda: True, outputs=local_model_enabled)
|
||
|
||
vc_submit.click(vc_fn, [sid, vc_input3, output_format, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment], [vc_output1, vc_output2])
|
||
vc_submit2.click(vc_fn2, [text2tts, tts_lang, tts_gender, tts_rate, tts_volume, sid, output_format, vc_transform,auto_f0,cluster_ratio, slice_db, noise_scale,pad_seconds,cl_num,lg_num,lgr_num,f0_predictor,enhancer_adaptive_key,cr_threshold,k_step,use_spk_mix,second_encoding,loudness_envelope_adjustment], [vc_output1, vc_output2])
|
||
|
||
debug_button.change(debug_change,[],[])
|
||
model_load_button.click(modelAnalysis,[model_path,config_path,cluster_model_path,device,enhance,diff_model_path,diff_config_path,only_diffusion,use_spk_mix,local_model_enabled,local_model_selection],[sid,sid_output])
|
||
model_unload_button.click(modelUnload,[],[sid,sid_output])
|
||
os.system("start http://127.0.0.1:7860")
|
||
app.launch()
|
||
|
||
|
||
|